
	
MIT AITI
Django Lab 6: Forms

In this lab we will add a form to let site visitors post comments on your blog.
Read the whole lab and reference section before starting.

Django resources:
Forms: docs.djangoproject.com/en/1.5/topics/forms/
Forms from Models: docs.djangoproject.com/en/1.5/topics/forms/modelforms/

1. Change directory to your myblog project.

2. When someone goes to a page for an individual blog post, we want them to

be able to submit a comment by writing their comment in a form. First we will
add HTML to display the form. Go to your templates/blog directory and open
detail.html. Add this code after the {% endfor %}

<div>New Comment</div>
<form method='post' action="">
 {{ form }}
 <input type='submit' name='Submit'>
</form>

This code creates a div that displays “New Comment”, creates an HTML form,
and prints out the form from the form variable that we will create in the view.

3. Now we will write the code to create the form in views.py. At the top of your

views.py, add the following lines:
from django.views.decorators.csrf import csrf_exempt
from django.http import HttpResponse, HttpResponseRedirect
from django import forms
import datetime

4. In views.py, right before your blog_detail method, create a class called

CommentForm that inherits from forms.Form

This should be a form that lets a user type in the body and the author of the
comments. The form should have 2 fields: body and author. Think about what
types of fields they should be. See the example and reference at the end of the
lab.

5. In views.py, put this line:

@csrf_exempt

 right before the line
def blog_detail(request,id,showComments=False):

This tells Django to ignore security errors for now.
	
6. In your	 blog_detail	 method, insert the following code after
comments = Comment.objects.filter(post=blog). Pay attention to
indentation! See below for an explanation of what the code is doing.

#start of form code
if request.method=="POST":

form = CommentForm(request.POST)
if form.is_valid():
 <your code here!>

return HttpResponseRedirect(request.path)
else:

form = CommentForm()
#end of form code

This code first checks if the form has been submitted, by checking if the form is
trying to send data through a “POST” request. If the form has been submitted,
the code gets the data from the form and checks if the form submission is valid
(all fields filled in correctly). Then it says <your code here>, which you will
replace with code saying what to do with the form data!
The else statement is called if the form has not been submitted, i.e. when
someone just navigated to that page. In that case, it just displays a blank form.

Make sure you understand what is happening, and ask us for help if you find any
of it confusing.

7. Now replace <your code here> with code that takes the form data and creates

a Comment object from it. To create a Comment object, you must set all the
fields that a Comment has. Check what those fields are in models.py.

Your code should:

• Get the body variable from the form
• Get the author variable from the form
• Set a current_time variable to be now (if you used date in your models:

datetime.date.today(), if you used datetime:
datetime.datetime.now())

• Create a new Comment object called comment, with all of the fields that a
Comment has. Think carefully about what each field should be. What should
the value of created be? How about post?

• Save the comment object with comment.save()

8. There is one more change to make before your comment form will be
displayed. In blog_detail, update the context to include the form:
c = Context({'blog':blog, 'comments':comments,
'form':form.as_p()})

9. Start your server. Go to the website (http://localhost:8000/blog/list) and
choose a post. Add comments to your post and make sure they show up.

Forms reference

If your Django model uses a field, your Django form should use the same exact
field type, except in the cases below:

If your Model field is… Your form field should be…
TextField CharField(widget=forms.Textarea)
ForeignKey ModelChoiceField
ManyToManyField ModelMultipleChoiceField

Example form:

class AuthorForm(forms.Form):
 name = forms.CharField(max_length=100)
 bio = forms.CharField(widget=forms.Textarea)
 birth_date = forms.DateField()

Creating a new Model instance from a form (this code goes in the view):

Get the data from the form
name = form.cleaned_data[‘name’]
bio = form.cleaned_data[‘bio]
birth_date = form.cleaned_data[‘birthdate’]

Create a new Author object
author = Author(name=name, bio=bio, birth_date=birth_date)

Save the object
author.save()

