
	
MIT AITI
Django Lab 2: Models

In this lab, we will set up the models and data for a blog. In Lab 1, we did the models,
views, and templates at once, but in the next several labs, we will be focusing on each
part individually. In larger projects, this is how things will often work – one person will do
models, one will do views, and another will do the templates. A designer doesn’t need to
worry about the database, and the database designer doesn’t need to worry about the
display style.

Today we will make models to represent a blog with comments on each post. We will
have a model for a post and a model for a comment.

If you get confused, look at the resources available to you:

1. Lecture slides
2. Django lab 1
3. Other students
4. Django documentation

a. Models: https://docs.djangoproject.com/en/1.5/topics/db/models/
b. Field reference: https://docs.djangoproject.com/en/1.5/ref/models/fields/

5. Google
6. Instructors

1. Create a new project called “myblog”

$ cd ~/Desktop
$ django-admin.py startproject myblog
$ cd myblog

2. Edit your settings.py file by typing
$ gedit myblog/settings.py

Fill in these variables:

DATABASES = {
 ...
 ‘ENGINE’: 'django.db.backends.sqlite3',
 ‘NAME’: 'blog.db',
 ...
}
...
TIME_ZONE = ‘Africa/Accra’

3. Create a new application (You should be in ~/Desktop/myblog right now):
$ django-admin.py startapp blog
$ cd blog

4. Edit the models file and create two models. Look at yesterday’s lab and today’s
handout for a reminder of how to do this.

a. Blog:
i. title (60 characters)
ii. body (large text)
iii. created (date created)
iv. updated (date updated)

b. Comment:
i. body (large text)
ii. author (60 characters)
iii. created (date created)
iv. updated (date updated)
v. post (foreign key linking Comment to Blog)

5. Configure your django project to allow the built-in admin
a. Open settings.py and change the installed app setting:

INSTALLED_APPS= (
 ...
 ‘blog’,
 ‘django.contrib.admin’,
)

b. Open urls.py (the one in ~/Desktop/myblog/myblog) and uncomment the

admin lines:
...
from django.contrib import admin
admin.autodiscover()
...
urlpatterns = patterns('',
 ...
 url(r'^admin/', include(admin.site.urls)),
...

6. Add admin information to the models
a. At the top of your models.py, add:

From django.contrib import admin
b. At the end of your models.py, add:

admin.site.register(Blog)

7. Update the database and start the server
$ cd ~/Desktop/myblog
$ python manage.py syncdb
$ python manage.py runserver

Remember to say “yes” to creating a superuser.

8. Go to admin and add 3 posts.
http://localhost:8000/admin

Django Reference: File Structure

Here is a guide to the file and directory structure of a Django project. Use this to figure
out how to navigate to each file in your project. Arrows mean one file or folder is within
another folder. For example, settings.py is inside myblog, which is inside another folder
named myblog, which is in Desktop. You can therefore open settings by typing:
gedit ~/Desktop/myblog/myblog/settings.py

Blue files/folders are related to the myblog project as a whole. Green files/folders are
specific to the blog app. Folders with a blue outline need to be created manually; all
others are created for you by Django and you just add your code in them.

Django Reference: Models

Here is an example of a model, from lab 1:

from django.db import models

class Notes(models.Model):
 title = models.CharField(max_length=255)
 content = models.TextField()
 def __unicode__(self): #note: 2 underscores on each side
 return self.title

Some points to note:
• Every model inherits from models.Model
• The __unicode__ function tells Django what to call each instance of the model

when displaying a list of them. For example, each Note should be called by its
title.

Here are some types of Fields you can use in your models:

BooleanField

– Checkbox
CharField(max_length)

– Single-line textbox
DateField

– Javascript calendar
DateTimeField

– Javascript calendar, time picker
DecimalField(max_digits,
decimal_places)

– Decimal numbers
EmailField

– Charfield that validates email
address

FileField
– File upload, stores path in

database
FloatField

– Floating point numbers

IntegerField
– Integer textbox

PositiveIntegerField
– Integer textbox for positive integers

TextField
– Multi-line textbox

TimeField
– Time picker

URLField
– Textbox for URLs

Special Fields denoting relationships:

ForeignKey(foreign class)
– Many-to-one

ManyToManyField(foreign class)
– Uses a temporary table to join

tables together
OneToOneField(foreign class)

– Enforces uniqueness

