```
##LAB 1 EXERCISES##
##1. Writing your first Python function
##Here are some examples of simple functions:
def f(x):
    return x**2 + 2
>>>f(2)
6
def ageFunction(name, age):
    if age >= 20:
        return "gosh, "+name+" you are getting old!"
    else:
        return "you will be "+age+20+" in "+age+20" years!"
def blastoff(timeInSeconds):
    while timeInSeconds >= 0:
        print timeInSeconds
        timeInSeconds -= 1
    print "BLAST OFF!"
'''
Write a method rand_divis_3 that takes no parameters, generates and prints a random number, and finally returns True if the randomly generated number is divisible by 3, and False otherwise. For this method we'll use a new module, the random module. At the top of your code, underneath import math, add the line import random. We'll use this module to generate a random integer using the function randint, which works as follows: random. randint(lo, hi)
where lo and hi are integers that tell the code the range in which to generate a random integer (this range is inclusive). 0 to 100 is probably a decent range.
2. Write a method roll dice that takes in 2 parameters - the number of sides of the die, and the number of dice to roll - and generates random roll values for each die rolled. Print out each roll and then return the string, "That's all!"
An example output:
>>> roll_dice(6, 3)
4
1
6
"That's all!"
\#\#2. Palindrome?
in IDLE, set a to a string
>>> a = "Good morning"
toy around with []. see what \(a[0]\) produces. \(a[-2]\) ? what does \(a[3:]\) produce? \(a[: 3]\) ? \(a[:: 2]\) ?
\#\#Complete the following codes to test if a string is a palindrome. The function should be able to handle \#\#(read: ignore) spaces and capital letters (so 'Never odd or even' should return True). Please refer to Python's \#\#online documentation to see some more capabilities strings in Python have. http://docs.python.org/library/ string.html
def is_palindrome(aStr):
aStr = \#YOUR CODE HERE\#
aStr \(=\) \#YOUR CODE HERE\# aStrRev = \#YOUR CODE HERE\#
if aStr == aStrRev:
return True
else:
return False
def is_palindrome2(aStr):
aStr = \#YOUR CODE HERE\#
\#recreate aStr in one line so it is lowercase and has no whitespace
back_index = -1
for char in aStr:
if \#YOUR CODE HERE\# \#conditional if the characters in aStr don't match up forwards and backwards return False
back_index -= 1
return True
```

\#\#Challenge: Can you recreate this palindrome answer in one line?
\#\#3. Intro to Dictionaries
\#Quick Reference $D=\{ \}$ creates an empty dictionary
\#D = \{key1:value1, ...\} creates a non-empty dictionary
\#D[key] returns the value thats mapped to by key. (What if there's no such key?)
\#D[key] = newvalue maps newvalue to key. Overwrites any previous value. Remember - newvalue can be any
\#valid Python data structure.
\#del D[key] deletes the mapping with that key from D.
\#len(D) returns the number of entries (mappings) in D.
\#x in D, x not in D checks whether the key x is in the dictionary D.
\#D.keys() - returns a list of all the keys in the dictionary.
\#D.values() - returns a list of all the values in the dictionary.
\#For problem 3, write a dictionary that catalogs the classes you took last term - the keys should be the class \#code (e.g. Phys101), and the values should be the title of the class.
\#Then, write a function add class that takes 3 arguments - a class code, class description, and the dictionary \#- that adds new classes to your dictionary. Use this function to add the classes you're taking next term to the \#dictionary.
\#Finally, write a function print classes that takes two arguments - a Course short name (eg 'Phys' or 'Bio') \#and the dictionary you've built - and nicely prints out all the classes you took in that Course.
Example output:
>> print_classes('Phys', myClassDict)
Phys101 - Introductory Mechanics
Phys102 - Introduction to Electricity and Magnetism
>> print_classes('Bio', myClassDict)
No Bio classes taken.

