=a\
MIT AITI
Python Software Development ug/ MIT&AITI

Lab 07: Users and Registration

In this lab, you will be adding a way to interact with your users in your blog project. The
end result will be the following:

e Users can log in and log out

* Users can add a comment if they are logged in (and the author is automatically filled

in

. Us)ers can edit only their own comments
If you get stuck, take a look at these resources:

1. Lecture slides

2. Previous labs

3. Other group members

4. Django documentation

a. Authentication: https://docs.djangoproject.com/en/dev/topics/auth/
Google
Instructors

SN

Part 1: Set up user login system

1. Make a new app called reg.
$ cd ~/Desktop/myblog
$ django-admin.py startapp reg
This will make a new folder called reg

2. Edityour urls.py. After the part that redirects all blog/ urls to the blog/urls.py
file, make a similar line that redirects all reg/ urls to the reg/urls. py file

3. Go into the reg directory
$ cd reg

4. The models file doesn't need to be edited because django makes a user model by default

5. Inurls.py, add a line that points all login/ urls to the login_view function like so:
url(r'"login/$', 'reg.views.login view'),

Add another line that points logout to the logout view
6. Now edit the views.py file and put in the following:

from django.template import Context, loader

from django.http import HttpResponse, HttpResponseRedirect
from django import forms

from django.contrib.auth import authenticate, login, logout
from django.shortcuts import render to response

from django.views.decorators.csrf import csrf exempt

class LoginForm(forms.Form):
username = forms.CharField()
password = forms.CharField(widget=forms.PasswordInput)

@csrf exempt
def login view(request):
if request.method == 'POST':
#YOUR CODE HERE
pass
form = LoginForm()
return render to response('reg/login.html’', {
"form': form,
'logged in': request.user.is authenticated()

})

@csrf exempt
def logout view(request):
logout (request)
return render to response('reg/logout.html’)

Recall the function render to_response, mentioned briefly in Lab 5. This is justa
shortcut (notice this is from django.shortcuts in the import statement), to pass
some context to a template. This accomplishes the same thing as the code we were
using before (define template, define context, render the template with a context), but is
only one line long.

Implement the code in the login_view where it says #YOUR CODE HERE

e This if statement will be executed when you press the submit button to log in.

* Check if the username and password are correct, and if they are, log in the user and
refresh the page (i.e. redirect to the current page).

* The submitted username is request .POST['username'] . (Reminder:
request.POST is a dictionary)

* You can check if a user is authenticated using authenticate (username,
password). If the return value is None, then authentication failed. Otherwise, it
worked.

* You can log the user in by doing 1login (request, user), where user is the
returned value of the authenticate function.

Now that your view is done, you can now edit the templates.
$ cd ~/Desktop/myblog/templates
$ mkdir reg

$ cd reg

Make two new template files (the filenames are listed in the views). In the file
corresponding to the login view, put the following:

Blog

<form action="." method="post">

{{ form.as p }}

<input type="submit" value="Submit" />

</form>
This will show the user the login form every time. Instead, change this so that the user
is shown "you are already logged in", and a logout link if they are logged in. Hint: look at

the context you are passing to this view.

8. In the file corresponding to the logout_view, put the following:
Blog

You have been successfully logged out.

login

9. Test to see if it's working. First, go to your admin page and add a few users. Then, go to
localhost:8000/reg/login, and make sure you can log in and log out.

Part 2: Integrate users into your blog:
10. Open up your blog view
$ gedit ~/Desktop/myblog/blog/views.py

11. You need to make three changes to the blog detail method:

* change one of the lines such that the author field no longer shows up

* Make sure the author is still put into the comment before it is saved. (Hint: the
author is the user's username. You need to find out how to get this.)

* passthe 'request' parameter to the template by adding it to the context. This will
be used in deciding what to show in detail.html

* (Change the comment edit method such that an HttpResponse with the text
“You do not have permission to edit this comment” is returned if the user is not
allowed to edit a comment. Only the author is allowed to edit his/her own comment.

12. Finally, edit the details template so that only logged-in users can add comments, and
users can only edit their own comments.

13. Check that this works properly when you are logged in or logged out.

