MIT AITI

g=a)"
Mobile, Python, Software Development
y p &) MITGAITI
Lab 05: Templates

You will be adding templates to your blog app. These templates will allow you to view your blogs and
comments. If you get stuck, take a look at these resources:

Lecture slides
Previous labs

Other group members

P wnN e

Django documentation
a. Template Syntax overview: https://docs.djangoproject.com/en/dev/topics/templates/
b. Template reference: https://docs.djangoproject.com/en/dev/ref/templates/

5. Google

6. Instructors

Setting up your template directory

1. Change to your blog’s directory
$ cd ~/Desktop/myblog

2. Create directories where you will store templates
$ mkdir templates
$ mkdir templates/blog

3. Edit settings.py. Add the following lines to the top of the file

import os
PROJECT ROOT = os.path.realpath(os.path.dirname(file))

Edit TEMPLATE_DIRS to be.

TEMPLATE DIRS = (
os.path.join (PROJECT ROOT, ‘../templates’)

This will tell Django to look in the template directory you just created for templates to be mentioned

in your blog app.

4. Change directory to templates/blog
$ cd templates/blog

Creating templates

Create a new template file base.html in templates/blog and insert the code

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>My Blog</title>
</head>
<body>
<hl1>My Blog</hl>
<div id="content">
{% block content %}
{% endblock %}
</div>
</body>
</html>

Create a new template file list.html in templates/blog. Edit list.html so that it extends base.html and
overrides the content block with the lines

{% for blog in blog list %}
<h2>{{ blog.title
}1</h2>

<div>Created: {{ blog.created }}</div>
<div>Last updated: {{ blog.updated }}</div>
<div>{{ blog.body|linebreaks }}</div>

{% endfor %}

Note that when extending, you must reference base.html as “blog/base.html|” instead of
“base.html”. Why?

Create a new template file detail.html in templates/blog. The purpose of detail.html
will be to display a single blog post and all of its comments. Edit detail.html so that it extends
base.html and overrides the content block in order to display

8.

9.

10.

* Ablog’s title, body, date of creation, and date of last update. Assume that you have access
to the relevant Blog object with the variable named b1og. You can inspect the blog with
{{ blog.title }}, {{ blog.body }},etc.

* All comments associated with the blog. For each comment, show the comment’s author,
body, date of creation, and date of last update. Assume that you have access to a variable
comment list whichis a list of all Comment objects associated with the blog. Each
Comment object c in comment 1list can beinspected with { { c.author }}, {{

c.body 1}},etc. Hint: do aforloop over comment 1list usingthe {% for ...} tag.

Create a new template search.html in templates/blog. The purpose of search.html is to list all blogs
that have a match against a search query. Edit search.html so that it extends base.html and
overrides the content block in order to display

* The search query term. Assume that it is stored in the variable query.
* Alist of the titles of all blogs that matched the query. Assume that you have a list of the
Blog objects that matched in the variable blog list.

Directing URLs to templates

Now that you’ve created templates, the next step is to declare when these templates are to be
evaluated. You will do this by calling templates in the functions in views.py. Since these functions
are called in response to regex matches in urls.py, you will effectively be mapping URLs to
templates.

Make sure that views.py has the following import statement

from django.template import Context, loader

Edit the blog_list function in views.py to look like

def blog list(request, 1imit=100):
blog list = Blog.objects.all()
t = loader.get template('blog/list.html')
c = Context ({'blog list':blog list})
return HttpResponse (t.render(c))

Thefirstlineblog list = Blog.objects.all () isthe same as what you copied from Step

6 of Lab 4. The last three lines use new functions that you haven’t seen before.

* loader.get template(‘blog/list.html’) loads list.html

11.

12.

13.

14.

15.

16.

17.

18.

* Context({'blog list':blog list}) mapsthe name ‘blog_list’ to the actual
variable blog_list. This mapping will be used to evaluate the blog_list variable in list.html. In
general, the Context function takes in a dictionary where the keys are names of variables to
be used in the loaded template. This mapping is called a context.

* return HttpResponse (t.render (c)) simply returns the HTML found by

evaluating the template with respect to the context.

Go to http://localhost:8000/blog/list to see a list of your blog posts.

Edit the home function in views.py to look like

def home (request) :
t = loader.get template('blog/base.html')
c = Context(dict())
return HttpResponse (t.render(c))

Go to http://localhost:8000/blog/ to see the home page of your blog. The page should simply

contain a link to the list of your blog posts.

Edit the blog_detail function in views.py so that it loads detail.html and uses the mapping
{‘blog’ :blog, ‘comment list’:comment list}.

Go to http://localhost:8000/blog/list and then click on one of your blogs to see its details and

comments.

Edit the blog_search function in views.py to load search.html and use the {'blog_list":blog_list,
'query':query}.

Let <term> be a word in the title of one of your blog posts. Go to
http://localhost:8000/blog/search/<query> to see a list of blogs that matches a search for <query>.

(Cleaning up your code) Notice that you repeatedly use the same few lines when generating an
HttpResponse. First you load the template, then you create a Context, and then you render the
context in the template and return an HttpResponse. In software development, you never want to
unnecessarily repeat code. Fortunately, Django provides a shortcut that combines these steps into a
single function:

render to_response(template file, context dictionary)

To use this shortcut: from django.shortcuts import render to_ response. For
example, the last three lines of the blog 1list function from above can be shortened to a single
line:

render to_response('blog/list.html', {'blog list': blog list})

