6.189 IAP 2011: Recursion Notes

Recursion: (definition) noun. See recursion.

Recursion: Formal Definition: An algorithmic technique where a function, in order to accomplish a task, calls itself with some part of the task.

- Recursive solutions involve two major parts:

1. Base case(s), in which the problem is simple enough to be solved directly.
2. Recursive case(s). A recursive case has three components:
(a) Divide the problem into one or more simpler or smaller parts of the problems,
(b) Invoke the function (recursively) on each part, and
(c) Combine the solutions of the parts into a solution for the problem.

- Depending on the problem, any of these may be trivial or complex.

Example: Sum

A non-recursive example:

```
def it_sum(a_list):
    result = 0
    for x in a_list:
        result += x
    return result
```

We say that the above function iterates over the values in the variable a_list, and returns their sum.
Recursion is similar to iteration, such that the operation being performed is defined (partly) in terms of itself. Such an operation is said to be recursive.

Here is a recursive definition of the sum() function:

```
def rec_sum(a_list):
    if a_list == []:
        return 0
    else:
        return a_list[0] + rec_sum(a_list[1:])
```

rec_sum computes the same exact thing as it_sum, but in a different way. The first thing to note is that it does not use a for-loop. The second thing to note is that the rec_sum function calls itself. That is to say, rec_sum() is defined in terms of itself; it is recursive.

How does it work? Let's go through the parts of recursion mentioned at the introduction to this handout.

1. Base Case: What is the base case of rec_sum?
2. Recursive case:
(a) How do we divide the problem?
(b) Where do we invoke the function recursively?
(c) Finally, where do we combine the solutions?

Now, let's pretend to be a Python interpreter and execute the recursive calls ourselves.
rec_sum([1, 2, 3])
$=1+$ rec_sum $([2,3])$
$=1+\left(2+r e c_{-} \operatorname{sum}([3])\right)$
$=1+\left(2+\left(3+r e c _s u m([])\right)\right.$
$=1+(2+(3+0))$
$=1+(2+3)$
$=1+5$
$=6$

Note that our base case is when the list is empty. That is the recursive call to rec_sum([]), which evaluates to 0 . A base case is very important - it is the stopping point for recursion.

The recursive case is demonstrated by calls to rec_sum where the argument is a non-empty list. During a recursive case, we make incremental progress towards solving the problem, and also make a recursive call to the function with a smaller input space.

