
Accelerating

Information Technology

Innovation

http://aiti.mit.edu

Ghana Summer 2011

Lecture 08 – Exceptions

Do any of these look familiar to

you?

SyntaxError: …

2

IndexError: …

KeyError: …

EOFError: …

IOError: …

ValueError: …

ZeroDivisionError: … NameError: …

TypeError: …

AttributeError: …

Exceptional Situations

def calculate_infinity():

 infinity = 3/0

 return infinity

3

Exceptional Situations

def calculate_infinity():

 infinity = 3/0

 return infinity

4

Exception Terminology

• Exceptions are events that can modify the flow or
control through a program.

• try/except : catch and recover from the error raised by
you or the Python interpreter

• finally: perform cleanup actions whether exceptions

occur or not

• raise: trigger an exception manually in your code

• assert: conditionally trigger an exception in your code

5

Dealing with Problems

Two Ways:

6

Look

Before

You

Leap

Easier to

Ask

Forgiveness than

Permission

Look Before You Leap

• Before we execute a statement, we check
all aspects to make sure it executes
correctly:

– if it requires a string, validate it

– if it requires a dictionary key, validate it

• Tends to make code messy. The heart of
the code (what you want it to do) is hidden
by all the checking.

7

Look Before You Leap

Example:

#LBYL, test for the problematic conditions

if not isinstance(s, str) or not s.isdigit:

 return None

elif len(s) > 10: # too many digits to
convert

 return None

else:

 return int(str)

8

Easier to Ask Forgiveness than

Permission
• Run any statement you want, no checking

required.

• However, be ready to “clean up any messes” by
catching errors that occur.

• The try suite code reflects what you want to
do, and the except code what you want to do on
error. Cleaner separation!

• Python likes EAFP!

9

Easier to Ask Forgiveness than

Permission

Example:

#EAFP, just do it, clean up messes
with handlers

try:

 return int(str)

except (TypeError, ValueError,
OverflowError):

 return None

10

Try, Except, Else and Finally

try:

 code to try

except pythonError1:

 exception code

except pythonError2:

 exception code

except:

 default except code

else:

 (No exceptions happened)

finally:

 clean up code
11

Nesting Exception Handlers

Once the exception is caught, its life is over.

12

Nesting Exception Handlers

• But if the „finally‟ block is present the code
in the finally block will be executed,
whether an exception gets thrown or not.

13

User-Defined Exceptions

class MyError(Exception):

 def __init__(self, value):

 self.value = value

 def __str__(self):

 return repr(self.value)

14

Raising exceptions

• We are running a bank, and don‟t allow

people to have negative balances, so we

have created a “NegativeBalanceError”

exception.

if (balance-amount)<0:

 raise NegativeBalanceError

15

Exception Idioms

• All errors are exceptions, but not all exceptions are
errors. It could be signals or warnings

 >>>while line != “exit”:

 try:

 line=raw_input()

 except EOFError:

 break

 else:

 # process next line

• Functions signal conditions with raise (to distinguish
success or failure)

16

Exception Design Tips

• Operations that commonly fail are generally wrapped in try
statements. E.g:

– file opens

– socket calls

– Database queries

• However, you may want failures of such operations to kill your
program instead of being caught and ignored if the failure is a
show-stopper. Failure = useful error message.

• Implement termination in try/finally to guarantee its execution.

• It is sometimes convenient to wrap the call to a large function in a
single try statement rather than putting many try statements inside
of the function.

17

Why try…except instead of If/else

• Someone else writes an API, but you are

writing code on top of it. If there‟s an error,

you need to know about it and handle it.

• If you don‟t catch exceptions, your

program will die.

• Allows your program to recover from

unexpected situations without writing code

for every possible failure case

18

Applications/Common uses

• Databases (sql errors)

• Network communications (timeouts)

• Working with files (EOF, formats,

corruption, file not found)

• Cameras

• Everything in Android (Android can throw

217 different exceptions!)

19

