
Africa Information
Technology Initiative

Lecture 18:
Introduction to J2ME

AITI 2009

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Java 2 Micro Edition (J2ME)
•  A version of Java designed for mobile computing
•  Pros:

–  Its Java!
–  Portable
–  Application development is fast
–  Many new phones come with an interpreter

•  Cons:
–  Slow (it's interpreted)
–  Hard to access device specific features
–  Limited as compared to J2SE

http://aiti.mit.edu Africa Information Technology Initiative © 2009

J2ME
•  Two broad hardware configurations:

– Connected, Limited Device Configuration
(CLDC): mobile phones

– Connected Device Configuration (CDC):
PDAs

•  Profile is a specific type of configuration
– Mobile Information Device Profile (MIDP)

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Course Mobiles
•  Nokia N70’s support:

– CLDC 1.0 (newest version is 1.1)
– MIDP 2.0 (newest version is 2.1)

•  Nokia N95's support:
– CLDC 1.1
– MIDP 2.0

•  Nokia 6300 supports:
– CLDC 1.1
– MIDP 2.0

4

http://aiti.mit.edu Africa Information Technology Initiative © 2009

•  No floating point for CLDC 1.0
•  System.out.print/println don’t do anything!

–  In the WTK the print to console
•  Subset of java.lang

–  Limited implementation of many classes
•  Very limited java.util / java.io
•  Make sure you are reading the JavaDoc for the

J2ME MIDP when you are developing!

Differences Between J2SE and
CLDC/MIDP

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Compilation for J2ME
•  Extra steps versus desktop Java:

– Compilation using Java compiler
•  Must include the J2ME Java libraries

– Pre-verification of bytecode
– Package the classes application for

deployment
•  Create a jar archive of the class files

•  All this is done for you in the Java
Wireless Toolkit

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Terminology

Soft Buttons

Select (OK) Button

Navigation (Arrow) Buttons

http://aiti.mit.edu Africa Information Technology Initiative © 2009

CLDC/MIDP Applications
•  All cell phone applications inherit from the

MIDlet class
–  javax.microedition.midlet.MIDlet

•  The MIDlet class defines 3 abstract
methods that the cell phone app must
override:
–  protected abstract void startApp();
–  protected abstract void pauseApp();
–  protected abstract void

 destroyApp(boolean unconditional);

http://aiti.mit.edu Africa Information Technology Initiative © 2009

MIDlets
•  These methods are called by the J2ME

runtime system (interpreter) on your
phone.
– When an application is started, startApp() is

called.
– When an application is paused, pauseApp() is

called.
– When an application is exited,

destroyApp(boolean) is called.

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Life Cycle of a MIDlet

Paused

Active Destroyed

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Constructor versus startApp()
•  In the constructor you should create and

initialize objects.
– These are done once per run

•  startApp() might be called multiple times
for a single run
– The app is woken from paused
–  In startApp(), you should set the display and

be ready for execution

11

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Pausing a MIDlet
•  Your application might be paused

– A call is accepted while the your application is
running

– The runtime will call pauseApp() before your
application is paused

•  You can pause your app by calling
notifyPaused() from within the app
– Your app is still memory-resident, but the user

is taken back to the menu

12

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Exiting a MIDlet
•  The runtime system can kill your

application
– User presses hangup command
– Before it does, it will call destroyApp(true)

•  You can kill your app by calling
notifyDestroyed()
– You still have to call destroyApp(true) explicitly

13

http://aiti.mit.edu Africa Information Technology Initiative © 2009

pauseApp() and destoryApp()
•  pauseApp()

– Called when app is paused
– Close connections / stop threads

•  destroyApp(boolean unconditional)
– Called when an application is about to exit
– You can ignore the exit if unconditional == false
– Clean up code goes here
– Close connections / stop threads
– Save state if necessary

14

http://aiti.mit.edu Africa Information Technology Initiative © 2009

The MIDlet Philosophy
•  Abstraction:

– Specify the user interface in abstract terms
– Just specify the components to add
– A limited set of predefined components
– Let the MIDP implementation decide on the

placement and appearance
– Ex: add a “done” command somewhere on

the screen

http://aiti.mit.edu Africa Information Technology Initiative © 2009

The MIDlet Philosophy
•  The device’s display is represented by an

object of the Display class
–  Think of it as an easel

•  Objects that can be added to a Display are
subclasses of Displayable
–  Canvas on the easel

•  MIDlets change the display by calling
setCurrent(Displayable) in Display

http://aiti.mit.edu Africa Information Technology Initiative © 2009

The MIDlet Philosophy
1.  Show a Displayable with something

on it
2.  Wait for input from user
3.  Decide what Displayable to show next

and what should be on this
Displayable.

4.  Go to 1.

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Example Application: ToDoList

http://aiti.mit.edu Africa Information Technology Initiative © 2009

The Displayable Hierarchy
Displayable

Screen

Alert List Form TextBox

Canvas

•  The appearance of the Screen sub-classes are device-dependent

•  All these classes are defined in javax.microedition.lcdui

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Getting the Display
•  The Display object representing the screen is

created for you

•  You can access it by calling the static method
Display.getDisplay(MIDlet)

•  Example (inside a subclass of MIDlet):
Display display = Display.getDisplay(this);

20

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Simplest Displayable: Textbox
•  Show text or allow user to

input text

•  Creating a TextBox:
TextBox textBox2 =

 new TextBox("TextBox2",

 "The Second Displayable",

 32, 0);

(has not been displayed yet, just created)

21

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Commands

•  A command is something the user can invoke
•  We don’t really care how it is shown on the

screen
•  Example:

–  Command c = new Command(“OK”,
 Command.OK, 0);

•  You can add commands to a Displayable using:
–  public void addCommand(Command)

Commands

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Commands

Command c = new Command("OK", Command.OK, 0);

To Create a command, you need a name, type and
also a priority.

Ex:

•  Command text is display on the screen

•  Type does not affect the action of a command, only how it is
displayed.

 Ex: Command.BACK is placed on left soft-button

•  If more than 2 commands on a screen, lowest priority number
command may not be grouped

Command Text

Command Type

Priority

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Command Types
There are different types of commands available

for you to use:
•  Command.OK – Confirms a selection
•  Command.CANCEL – Cancels pending changes
•  Command.BACK – Moves the user back to a previous screen
•  Command.STOP – Stop a running operation
•  Command.HELP – Shows application Instructions
•  Command.SCREEN – indicates generic type for specific application

commands

Command launch = new Command("Launch", Command.OK, 0);

Command back = new Command("Back", Command.BACK, 0);

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Example of Adding Command
Command CMD_NEXT = new Command("Next", Command.OK, 0);

TextBox textBox1 = new TextBox("TextBox1",
 "The first Displayable", 30, TextField.ANY);
 textBox1.addCommand(CMD_NEXT);

•  You can add as many commands to a display as
you want.

•  If more than 2, some will be grouped into a
"Menu" command
–  Use priority argument of Command constructor

25

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Example of Displaying TextBox

•  Get the Display object for the mobile's
screen

•  Set the current Displayable to textBox1

•  The TextBox will be displayed, and the
Command will be mapped to a soft-
button.

26

Display.getDisplay(this).setCurrent(textBox1);

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Responding to Command Events

•  When a Command is invoked by the user,
a method is called to service the command

•  The exact method is:
•  public void commandAction(
 Command c, Displayable d)

•  c is the Command invoked and d is the
Displayable the Command was added to.

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Responding to Command Events
•  We need to tell the Displayable the object in

which to call commandAction()
•  Two Steps:

1.  The class of the object must implement the
interface CommandListener
•  CommandListener defines commandAction()

2.  You tell the Displayable which object by
calling setCommandListener(CommandListener) on
the Displayable

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Example
import javax.microedition.lcdui.*;
import javax.microedition.midlet.MIDlet;

public class HelloWorld extends MIDlet implements
CommandListener {

 private static Command CMD_EXIT = new
 Command("Exit", Command.EXIT, 0);

 private static Command CMD_NEXT = new
 Command("Next", Command.OK, 0);

 private TextBox textBox1;
 private TextBox textBox2;

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Example
 public HelloWorld()
 {
 textBox1 = new TextBox("TextBox1",
 "The first Displayable", 30, TextField.ANY);
 textBox1.addCommand(CMD_NEXT);
 textBox1.setCommandListener(this);

 textBox2 = new TextBox("TextBox2",
 "The second Displayable", 30, TextField.ANY);
 textBox2.addCommand(CMD_EXIT);
 textBox2.setCommandListener(this);

}

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Example
public void startApp() {
 Display.getDisplay(this).setCurrent(textBox1);

}

public void commandAction(Command c, Displayable d)
{
 if (d == textBox1 && c == CMD_NEXT)
 Display.getDisplay(this).setCurrent(textBox2);
 else if (d == textBox2 && c == CMD_EXIT) {

 destroyApp(true);
 notifyDestroyed();
 }

}

public void pauseApp(){} public void destroyApp(boolean u) {} }

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Example Run

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

33

J2ME
Runtime

Your Code

HelloWorld.java

User starts application

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

34

J2ME
Runtime

Your Code

HelloWorld.java

J2ME runtime is invoked
 Calls HelloWorld()
 constructor

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

35

J2ME
Runtime

Your Code

HelloWorld.java

HelloWorld() constructor
is executed and returns

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

36

J2ME
Runtime

Your Code

HelloWorld.java

J2ME runtime calls
HelloWorld.startApp()

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

37

J2ME
Runtime

Your Code

HelloWorld.java

HelloWorld.startApp is
called:

 Displays textBox1 and
 returns

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

38

J2ME
Runtime

Your Code

HelloWorld.java

J2ME Runtime is
waiting for user input

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

39

J2ME
Runtime

Your Code

HelloWorld.java

User presses "Next"

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

40

J2ME
Runtime

Your Code

HelloWorld.java

J2ME Runtime catches
the key press.

Finds HelloWorld obj is
registered as Listener
for textBox1

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

41

J2ME
Runtime

Your Code

HelloWorld.java

J2ME Runtime calls

CommandAction(CMD_NEXT,

 textBox1)

on HelloWorld obj.

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

42

J2ME
Runtime

Your Code

HelloWorld.java

In
CommandAction(CMD_NEXT,

 textBox1)

first if statement is true:
 Display textBox2

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

43

J2ME
Runtime

Your Code

HelloWorld.java

J2ME Runtime is
waiting for user input

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

44

J2ME
Runtime

Your Code

HelloWorld.java

User presses exit

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

45

J2ME
Runtime

Your Code

HelloWorld.java

J2ME Runtime catches
the key press.

Finds HelloWorld obj is
registered as Listener
for textBox2

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

46

J2ME
Runtime

Your Code

HelloWorld.java

J2ME Runtime calls

CommandAction(CMD_EXIT,

 textBox2)

on HelloWorld obj.

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

47

J2ME
Runtime

Your Code

HelloWorld.java

In
CommandAction(CMD_NEXT,

 textBox2)

second if statement is true:
 destroyApp(true);

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

48

J2ME
Runtime

Your Code

HelloWorld.java

In
CommandAction(CMD_NEXT,

 textBox2)

second if statement is true:
 destroyApp(true);

notifyDestroyed();

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

49

J2ME
Runtime

Your Code

HelloWorld.java

J2ME Runtime frees
HelloWorld's memory and exits
application.

http://aiti.mit.edu Africa Information Technology Initiative © 2009

Flow of Execution

50

J2ME
Runtime

J2ME Runtime frees
HelloWorld's memory and exits
application.

