MIT AIT &) MITGAITI

Python Software Development

Lab 06A: Object-Oriented Programming

In this lab, you will implement two versions of a program in order to better understand the
difference between imperative and object-oriented programming. Please read the instructions
carefully.

= Create a new project named “lab06”
=>» Create a new Python file called “lab06-1.py”

Part | — Imperative Programming

Your goal is to create a program which can store and return various statistics about sports
players, without the use of inheritance or class structures. In order to accomplish this, you will
create a series of lists, each containing a property of the person.

1. The system you’re building should, at minimum, know each player, what team he or she
plays for, and some sense of his or her scoring. In a new python file, define three List data
structures called nameList, teamList, and scorelList.

a. Populate nameList and teamList with five players in whatever sport you want
your system to support, e.g:

nameList=[*Asamoah Gyan”,”Michael Essien”,”Didier
Drogba”,”Emmanuel Adebayor”,”Samuel Eto’0’’]

and

teamList = [“Sunderland”,”Chelsea’”,”Chelsea’,’Man
City”,”Inter”]

2. Consider how you might store the information regarding scoring. For football, you could
record total goals scored but that doesn’t give you any information about whether the goal
was for a club or national team, when it was scored, against whom, etc. Similarly for cricket,
you could record total runs scored, or strike rate, but you would be missing much of the
important information. For simplicity, assume you want to record some score (goals scored,
runs scored, wickets taken, saves, etc.) and the date it occurred.

You may implement this as you like, using tuples, dictionaries, or lists, as long as
you can return the date as a datetime.date and the score value as an int.

3. You now have the data for a very basic sport statistics program. The next step is to create
functions that return the data you want when called. Implement the following functions:
a. def highestScore() - returns the highest score by anyone in the system in a
tuple: (player name, team, date of score, score).
b. def highestScoreForPlayer(player) - returns the highest score by the
supplied player in the same tuple as above, or None if the player is not in the



system. Hint: You can find the index of an item in a list by using the index()
function, e.g. [*a","b","c"].index(“b"). You will, however, need to catch an exception if
the item is not in the list, so it may be more straightforward to iterate.

c. def highestScorer() - returnsthe name of the player with the highest scoring
sum, i.e. the total of all the goals/runs/etc. stored in the system.

d. def highestAverageScorer() - returnsthe name of the player with the highest
average, i.e. the total of all the goals/runs/etc divided by the number of matches.

e. def addScore(player,date,score) - adds a new score element to the score
datastructure.

4. Now imagine your application has caught the attention of a local web company who wants to
use it for their sports reporting. However, the information provided has to be much deeper;
in addition to scoring they want (using football as an example) things like dates with different
teams, minutes played in each match, player birthdays and age, height, nationality,
appearances, injuries, etc. This is, of course, represents many, many lists.

Choose two additional statistics, of which one must be dynamic —i.e. changing as time
passes - and add new data structures to hold their values. Also add functions to get and set
these values.

Part Il — Object-Oriented Programming | — Structs and Data Encapsulation

By now you should see that designing, maintaining, and extending code based around loosely
coupled data held in lists is tedious and not straightforward to understand. We now reimplement
the same problem using object oriented methods in order to see the difference between the two
approaches.

= Create a new Python file called “1ab06-2.py”

1. Create a new class called Player as seen in the lecture:
class Player:
def __init__ (self,firstname, lastname, team=None):
self_Ffirstname = firstname
self.lastname = lastname
self.__scores = []
self_team = team

Object oriented programming in Python is typically getter/setter-free, so this can serve as
the entirety of the definition. Note that __ scores has the leading underscores so that
Python will ‘disguise’ its name to make it less convenient to directly access, as we don't
want the scores directly meddled with. Hint: please note that attributes defined outside of
the scope of __init__ are class rather than instance variables (i.e. like static variables
in Java).

2. Add a function def addScore(self,date,score) which will append new scores as
they occur.

3. Add functions def totalScore(self) and def averageScore(selT) which calculate
the total and average score of the player. Create a player and add some scores using
addScore, then check that the results are correct before moving on.



4. To keep things simple, we will define the remainder of the functions and variables at the
module scope.

a.

b.

Add a list for players: __players = [] Hint: You can use another datatype here
as a List is inefficient for this purpose. (Why?)

Add a function for adding new players def addPlayer(player) which just
appends the player to the end of the list, or adds it to your chosen datastructure.
Re-add the players you defined in lists in 1a. from Part | as Player objects using
addPlayer. You can also choose to initialize them in the initial variable assignment
statement, e.g.

__players = [Player(’Didier”,”Drogba”,”Chelsea’), ...]
Reimplement the functions in 3a.-3e. from Part I. For 3e., the function signature
should change to def addScore(firstname, lastname,date,score)

5. Your solutions to this lab will be evaluated both for correctness and for style. The Player
class you've created will be reused and augmented in Lab 06B, so please make sure it is
correct. Ask an instructor or assistant for help if you are lost.



