
Week 7 - Location and Maps
A few years ago my family spent some time in Montreal, Canada and just as we arrived
it began to snow and snow and snow. Of course, we quickly discovered that my two
daughters had forgotten to pack their snow boots, so we needed to buy boots and we
needed to buy them from a store that was close to us. I whipped out my mobile phone
and ran a search for boots in the local area.

The application came back with a list of shoe stores plotted on a map. It also allowed
me to get directions from my current location to the stores. We followed those
directions, bought some boots and saved our vacation.

I'm sure many of you could recount similar experiences. Sometimes the information we
need depends critically on where we are at the time we need that information. To help
out in these situations, Android includes support for location and maps.

In today's lesson, I'll talk about some of that support: about what location information is,
and the classes your applications will use to get it. I talk about maps, which allow you to
take location information and display it visually. I'll finish up by going over the classes
that Android provides, to let you display and customize maps.

Location

Generally speaking, mobile applications can benefit from being location-aware. To know
where things are at a particular moment Android allows applications to determine and
manipulate location information. Earlier I gave an example of using location capabilities
to find stores near my current location, and then to get directions from my current
location to one of those stores. Applications can also use this capability to do things like
define a geographical area, or Geofence, and then to initiate actions when the user
enters or exits the Geofence.

Android provides several support classes to make this possible. One is the Location
class. A Location represents a position on the Earth. A Location instance contains
information such as latitude, longitude, a time stamp and, optionally, an estimated
accuracy, altitude, speed and bearing. Location information comes from Location
Providers - devices can have access to multiple Location Providers.

The actual data may come from sources such as GPS satellites, cell phone towers and
WiFi access points. Specifically, applications can request information from the Network
provider, the GPS provider and the Passive provider.

The Network provider, determines location based on cell tower and WiFi access
points. If you want to use this provider, then you must declare either the
ACCESS_COARSE_LOCATION permission or the ACCESS_FINE_LOCATION

permission. The GPS provider gets its location data from GPS satellites. To use this
provider, you must declare the ACCESS_FINE_LOCATION permission. The Passive
provider doesn't actually turn on any devices - it returns locations that happen to have
been calculated through the requests of other applications. So using this provider
requires that you declare the ACCESS_FINE_LOCATION permission.

While you can get location information from each of these different sources, each offers
a differing trade-offs with respect to cost, accuracy, availability, and timeliness of the
data.

GPS – expensive, accurate, slower,
available outdoors
Network - cheaper, less accurate,
faster, availability varies
Passive – cheapest, fastest, not
always available

Let's look more closely at some of the providers available in Android.

The GPS provider relies on communicating with a satellite - it is generally the most
expensive but gives the most accurate readings. It also takes the longest amount of
time to provide that very accurate reading, and the user needs to have a clear view of
the sky when they're communicating with the GPS satellite.

The Network provider is cheaper than the GPS provider, but may give less accurate
readings. It takes less time to return location information than GPS, but it's useful only
when you're in the range of a cell tower or WiFi access point.

The Passive provider is the cheapest to use - you're essentially just reusing
measurements that already have been taken. So it's fast, but it may turn out that there
are no recent readings when your application asks for that information.

Location support classes

One way to access location information is to use the LocationManager class, which is
a System service for accessing location data. You first acquire a reference to the
location manager by calling the Context classʼs getSystemService method, passing in
an ID for the service: Context.LOCATION_SERVICE.

Once you have a reference to the LocationManager, you can use it to get location
information. For instance, you can determine the last reading taken by a particular
provider. You can register for location updates to find out when new location information
is acquired. And you can also register to receive intents when the device nears or
moves away from a given geographic region.

If you want to be informed when new locations are determined, you can implement and
use a LocationListener. The location listener interface defines the callback methods
that are called when location changes or when the status of a location provider
changes. A LocationListener interface includes the following methods:

• void onLocationChanged(Location location): called when a new location is
determined

• void onProviderDisabled(String provider): called when the user disables a
particular provider

• void onProviderEnabled(String provider): called when the user enables a particular
provider

• void onStatusChanged(String provider, int status, Bundle extras):

If your application cannot get a recent reading from the system, it will need to acquire its
own reading and will normally perform the following steps:

1. Start listening for updates from location providers by registering a Location listener
2. Maintain and update a current best estimate as it begins to receive location updates
3. Determine when the current best estimate is good enough
4. Stop listening for location updates by unregistering the Location listener
5. Finally, use that best estimate as the current location.

When you're determining whether your location is good enough, there are several
factors that you might want to consider. For example, for how long should you keep
measuring? A navigation system might need continuous measurement while a
restaurant finder application might need just a single measurement. Another question is,
how accurate a measurement do you actually need? Again, a navigation system needs
to know your location to say, within ten meters or so. A restaurant application, might just

need to know what city you're in, in which case you'd only need to know your location to
within a kilometer or so. Of course, the choices you make here will affect battery usage.
The example application, called LocationGetLocation, first acquires and displays the
last known location from all the providers on the device. If these readings are too old, or
have too low accuracy, then the application acquires and displays new readings from all
the providers.

Let's give LocationGetLocation a run. When it starts up, the best previous location
estimate from the device is displayed using red text. This reading is either not recent
enough or doesn't have enough accuracy, so the application acquires new location
estimates. These new readings are displayed using grey text.

Let's look at the source code for this applicationʼs main activity.
package course.examples.Location.GetLocation;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;
import java.util.Locale;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

import android.app.Activity;
import android.content.Context;
import android.graphics.Color;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.util.Log;
import android.widget.TextView;

public class LocationGetLocationActivity extends Activity {

 private static final long ONE_MIN = 1000 * 60;
 private static final long TWO_MIN = ONE_MIN * 2;
 private static final long FIVE_MIN = ONE_MIN * 5;
 private static final long MEASURE_TIME = 1000 * 30;
 private static final long POLLING_FREQ = 1000 * 10;
 private static final float MIN_ACCURACY = 25.0f;
 private static final float MIN_LAST_READ_ACCURACY = 500.0f;
 private static final float MIN_DISTANCE = 10.0f;

 // Views for display location information
 private TextView mAccuracyView;
 private TextView mTimeView;
 private TextView mLatView;
 private TextView mLngView;

 private int mTextViewColor = Color.GRAY;

 // Current best location estimate
 private Location mBestReading;

 // Reference to the LocationManager and LocationListener
 private LocationManager mLocationManager;
 private LocationListener mLocationListener;

 private final String TAG = "LocationGetLocationActivity";

 private boolean mFirstUpdate = true;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mAccuracyView = (TextView) findViewById
 (R.id.accuracy_view);
 mTimeView = (TextView) findViewById(R.id.time_view);
 mLatView = (TextView) findViewById(R.id.lat_view);
 mLngView = (TextView) findViewById(R.id.lng_view);

 // Acquire reference to the LocationManager
 if (null == (mLocationManager = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE)))
 finish();

 // Get best last location measurement
 mBestReading = bestLastKnownLocation
 (MIN_LAST_READ_ACCURACY, FIVE_MIN);

 // Display last reading information
 if (null != mBestReading) {

 updateDisplay(mBestReading);

 } else {

 mAccuracyView.setText("No Initial Reading Available");

 }

 mLocationListener = new LocationListener() {

 // Called back when location changes

 public void onLocationChanged(Location location) {

 ensureColor();

 // Determine whether new location is better than
 // current best estimate

 if (null == mBestReading
 || location.getAccuracy() <
 mBestReading.getAccuracy()) {

 // Update best estimate
 mBestReading = location;

 // Update display
 updateDisplay(location);

 if (mBestReading.getAccuracy() <
 MIN_ACCURACY)
 mLocationManager.removeUpdates
 (mLocationListener);
 }
 }

 public void onStatusChanged(String provider, int
 status, Bundle extras) {
 // NA
 }

 public void onProviderEnabled(String provider) {

 // NA
 }

 public void onProviderDisabled(String provider) {
 // NA
 }
 };
 }

 @Override
 protected void onResume() {
 super.onResume();

 // Determine whether initial reading is
 // "good enough"

 if (mBestReading.getAccuracy() > MIN_LAST_READ_ACCURACY
 || mBestReading.getTime() <
 System.currentTimeMillis()- TWO_MIN) {

 // Register for network location updates
 mLocationManager.requestLocationUpdates(
 LocationManager.NETWORK_PROVIDER, POLLING_FREQ,
 MIN_DISTANCE, mLocationListener);

 // Register for GPS location updates
 mLocationManager.requestLocationUpdates(
 LocationManager.GPS_PROVIDER, POLLING_FREQ,
 MIN_DISTANCE, mLocationListener);

 // Schedule a runnable to unregister location
 // listeners

 Executors.newScheduledThreadPool(1).schedule(new
 Runnable() {

 @Override
 public void run() {

 Log.i(TAG, "location updates cancelled");

 mLocationManager.removeUpdates
 (mLocationListener);

 }
 }, MEASURE_TIME, TimeUnit.MILLISECONDS);
 }
 }

 // Unregister location listeners

 @Override
 protected void onPause() {
 super.onPause();

 mLocationManager.removeUpdates(mLocationListener);
 }

 // Get the last known location from all providers
 // return best reading is as accurate as minAccuracy and
 // was taken no longer then minTime milliseconds ago

 private Location bestLastKnownLocation(float minAccuracy,
 long minTime) {

 Location bestResult = null;
 float bestAccuracy = Float.MAX_VALUE;
 long bestTime = Long.MIN_VALUE;

 List<String> matchingProviders =
 mLocationManager.getAllProviders();

 for (String provider : matchingProviders) {

 Location location =
 mLocationManager.getLastKnownLocation(provider);

 if (location != null) {
 float accuracy = location.getAccuracy();
 long time = location.getTime();
 if (accuracy < bestAccuracy) {
 bestResult = location;
 bestAccuracy = accuracy;
 bestTime = time;
 }
 }
 }

 // Return best reading or null
 if (bestAccuracy > minAccuracy || bestTime < minTime) {
 return null;
 } else {
 return bestResult;
 }
 }

 // Update display
 private void updateDisplay(Location location) {

 mAccuracyView.setText("Accuracy:" + location.getAccuracy
 ());
 mTimeView.setText("Time:"new SimpleDateFormat
 ("MM/dd/yyyy HH:mm:ss", Locale.getDefault()).format
 (new Date(location.getTime())));
 mLatView.setText("Longitude:" + location.getLongitude());
 mLngView.setText("Latitude:" + location.getLatitude());

 }

 private void ensureColor() {
 if (mFirstUpdate) {
 setTextViewColor(mTextViewColor);
 mFirstUpdate = false;
 }
 }

 private void setTextViewColor(int color) {
 mAccuracyView.setTextColor(color);
 mTimeView.setTextColor(color);
 mLatView.setTextColor(color);
 mLngView.setTextColor(color);
 }
}

Scrolling to the onCreate method, we see that the code acquires a reference to the
LocationManager. Next, it calls a method called bestLastKnownLocation, which will find
the last known location from every location provider, and return the most accurate of
these measurements that also meets certain criteria. If no readings meets those criteria,
the method returns null.

Next, the code displays information about the last reading. The code continues by
defining a LocationListener. In the listener's onLocationChange method the code
determines whether the new location is better than the current best estimate. If so, the
code then updates the best estimate, and then updates the display. If the accuracy is
less than min_accuracy, then the current location is considered good enough, so the
code unregisters the location listener.

Scrolling down, you see the onResume method, which checks whether the current best
estimate is of low accuracy, or was taken more than two minutes ago. If so, the code
registers Listeners for both the Network provider, and for the GPS provider. Then, the
code schedules a Runnable that will unregister the listeners after a fixed period of time.
The code will also unregister the LocationListener if the activity's onPause method is
called.

Here are some tips you can use to save battery power when you're creating location-
aware applications.
• Always check the last-known measurement. If that's good enough, then there's no

need to take new measurements.
• Return updates as infrequently as possible and limit the total measurement time.

Some applications, such as an application that tracks a jogger, need to update more
frequently and need to keep measuring while the application is running because the
user's location is changing. Applications like the one we just saw though will need a
single good measurement so they can measure infrequently and for less time.

• Use the least accurate measurement necessary, and only use GPS if you really
need to.

• Turn off the updates in OnPause.

Maps

Locations indicate real places around us, and so it often makes sense to visualize
locations using maps, which are visual representations of area. Android provides
mapping support through the Google Maps Android v2 API, which provides several
different kinds of maps:

• Normal maps, which look like traditional road maps.
• Satellite maps, which display aerial photographs of an area.
• Hybrids maps, which combine satellite photographs and road maps.
• Terrain maps, which display topographic details such as elevation.

Android allows your application to customize maps in several ways. For instance, you
can change the area of the map that's visible to the user. You can add icons, called
Markers, at specific places on the map. And you can add overlay images on top of the
map. You can make the map respond to gestures, such as a two-finger Stretch and
Pinch to zoom. And a two-finger Rotation to rotate the map. You can also have the map
indicate the user's current location, e.g., by placing a special marker on the map.

Map Support Classes

To display maps, your application will probably use some of the following classes:

• GoogleMap, which represents and manages the map itself
• MapFragment, which displays a Google map within a fragment
• Camera, which defines the part of the map that's visible on the screen, and defines the

viewpoint from which the user is seeing the map.
• Marker, which represents icons, sometimes with popup windows, that indicate

locations on the map and allows your application to display information associated with
those locations.

To set up and run a maps application, you'll need to take some extra steps.
• Configure the Google Play services SDK.
• Obtain an API key that identifies your application.
• Specify permissions, settings, and the API key in the AndroidManifest.XML file.
• Add the map to your application.

These steps are described in more detail at:
See: https://developers.google.com/maps/documentation/android/start

https://developers.google.com/maps/documentation/android/start
https://developers.google.com/maps/documentation/android/start

In order to use Maps, you'll need to include several permissions:

Internet permission, so that map images can be downloaded from Google Map servers:
<uses-permission android:name="android.permission.INTERNET"/>

Network state permission. Which the Maps API uses to determine whether it can
download data:
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"
/>

Write external storage permission because map data needs to be written to the device's
external storage area:
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"
/>

Google read services permission, so the Maps API can access Google Web Services:
<uses-permission
android:name="com.google.android.providers.gsf.permission.READ_GSERVICES"/>

Coarse and fine location permissions. If your map needs to acquire location information,
e.g. to display the user's current location then you'll need one or more of these:
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

Our next example application is called MapEarthquakeMap, which acquires earthquake
data from a server and displays it on a map using clickable markers. Let's take a look,
but first, let me take you back to the lesson on networking.

Recall that I showed you the NetworkingAndroid HTTPClientJSON application, which
issued a network request for earthquake data from the api.geonames.org web service.
The request returned a list of earthquakes that had occurred in a particular geographic
region, and the application displayed that data in a simple ListView.

As you can see, the application gets the earthquake data, and then presents it in a list
view. Now this is certainly fine - the data I wanted is there on the screen. But the user
interface isn't all that helpful to me. For example, I can't really visualize where on the
Earth these locations really are. And I can't easily distinguish major earthquakes from
lesser strength earthquakes.

So let's now look at the MapEarthquakeMap application. And we'll see the same data
but this time it's presented in a map. Here goes:

As you can see, instead of a list view showing lots of text the earthquake data now
appears as a set of markers on a map of the world. The location of the marker tells us
where the earthquake occurred. And the color of the marker indicates the magnitude of
the earthquake. Markers that are more red in tone indicate higher magnitude
earthquakes. Markers that are more blue in tone indicate lower magnitude earthquakes.
If I touch a marker, a pop-up window will appear showing the magnitude of that
earthquake.

Let's take a look at the source code for this application. Here's the applicationʼs main
activity. In OnCreate, the application sets the content view to the main.xml file in the
res/layout directory. Lets open that file now:
<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/map"
 android:name="com.google.android.gms.maps.MapFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

And here you can see that the entire layout is comprised of a single fragment that is
provided by the com.google.android.gms.maps.MapFragment class.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Turning back to the main activity, the application creates and starts an asyncTask, which
acquires the earthquake data in the do in background method. And then it parses it and
updates the map In the onPostExecute method. Let's scroll down to the onPostExecute
method now:

package course.examples.Maps.EarthQuakeMap;

import java.io.IOException;
import java.util.List;

import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.methods.HttpGet;

import android.app.Activity;
import android.net.http.AndroidHttpClient;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;

import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.MapFragment;
import com.google.android.gms.maps.model.BitmapDescriptorFactory;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;

public class MapsEarthquakeMapActivity extends Activity {

 // Coordinates used for centering the Map

 private static final double CAMERA_LNG = 87.0;
 private static final double CAMERA_LAT = 17.0;

 // The Map Object
 private GoogleMap mMap;

 // URL for getting the earthquake
 // replace with your own user name

 private final static String UNAME = "aporter";
 private final static String URL = "http://api.geonames.org/
earthquakesJSON?north=44.1&south=-9.9&east=-22.4&west=55.2&username="
 + UNAME;

 public static final String TAG = "MapsEarthquakeMapActivity";

 // Set up UI and get earthquake data
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

http://api.geonames.org/earthquakesJSON?north=44.1&south=-9.9&east=-22.4&west=55.2&username=
http://api.geonames.org/earthquakesJSON?north=44.1&south=-9.9&east=-22.4&west=55.2&username=
http://api.geonames.org/earthquakesJSON?north=44.1&south=-9.9&east=-22.4&west=55.2&username=
http://api.geonames.org/earthquakesJSON?north=44.1&south=-9.9&east=-22.4&west=55.2&username=

 new HttpGetTask().execute(URL);

 }

 private class HttpGetTask extends
 AsyncTask<String, Void, List<EarthQuakeRec>> {

 AndroidHttpClient mClient = AndroidHttpClient.newInstance
 ("");

 @Override
 protected List<EarthQuakeRec> doInBackground(String...
 params) {

 HttpGet request = new HttpGet(params[0]);
 JSONResponseHandler responseHandler = new
 JSONResponseHandler();

 try {

 // Get Earthquake data in JSON format
 // Parse data into a list of EarthQuakeRecs

 return mClient.execute(request, responseHandler);

 } catch (ClientProtocolException e) {
 Log.i(TAG, "ClientProtocolException");
 } catch (IOException e) {
 Log.i(TAG, "IOException");
 }

 return null;

 }

 @Override
 protected void onPostExecute(List<EarthQuakeRec> result) {

 // Get Map Object
 mMap = ((MapFragment) getFragmentManager
 ().findFragmentById(R.id.map)).getMap();

 if (null != mMap) {

 // Add a marker for every earthquake

 for (EarthQuakeRec rec : result) {

 // Add a new marker for this earthquake
 // and set the Marker's position,
 // set the title of the Marker's
 // information window and set the color for
 // the Marker.
 mMap.addMarker(new MarkerOptions()

 .position(new LatLng(rec.getLat(),
 rec.getLng())).title(String.valueOf
 (rec.getMagnitude()))
 .icon(BitmapDescriptorFactory
 .defaultMarker(getMarkerColor
 (rec.getMagnitude()))));
 }

 // Center the map
 // Should compute map center from the actual data
 mMap.moveCamera(CameraUpdateFactory.newLatLng(
 new LatLng(CAMERA_LAT, CAMERA_LNG)));
 }

 if (null != mClient)
 mClient.close();

 }

 // Assign marker color
 private float getMarkerColor(double magnitude) {

 if (magnitude < 6.0) {
 magnitude = 6.0;
 } else if (magnitude > 9.0) {
 magnitude = 9.0;
 }

 return (float) (120 * (magnitude - 6));
 }

 }

}

This method begins by getting a reference to the Google Map underlying the
MapFragment. Next, it iterates through the result data for each EarthQuakeRec in that
result data.

Each new marker is created by creating a MarkerOptions object and passing it to the
Google maps adMarker method. As we've seen with other API's the MarkerOptions
class uses a fluent interface, so the code first creates a new empty MarkerOption
object, and then sets the marker's position, by calling the position method, and then it
tacks on the text that will appear in a pop-up information window when the user touches
the marker by calling the title method.

In this case the title simply displays the earthquakeʼs magnitude. And after that the code
sets the color of the marker by tacking on a call to the icon method, passing in the
default marker, but setting it's color to reflect the earthquake's magnitude.

Finally the code calls the massMoveCamera method to center the map at a particular
location. To keep this example simple, I precomputed the map center, but it would be
better and more robust to compute the center based on the actual data returned by the
webservice.

That's all for our lesson on location and maps. Please join me next time when we'll
discuss data management.

Week 7 - Sensors
Handheld devices allow for context-aware computing, which means that applications
can respond or behave differently based on contextual factors, such as the location
where they're being used, how they're being held by their user, how much ambient light
there is, or how fast the user is traveling. To do this, applications read information from
the sensors that come built into today's hand-held devices.

In this lesson, I'll talk about the sensors that Android devices can support and how
applications can access these sensors. Next, I'll discuss SensorEvents, the class that
Android uses to represent sensor readings and SensorEventListeners, which are used
to transfer information from a sensor, to your application. After that, I'll discuss some
common techniques that are used to smooth out or filter sensor values, so that
applications can use the values in a variety of different ways. As we go through the
lesson, I'll demonstrate several example applications that make use of common
sensors.

Sensors are hardware components that measure the physical environment around the
device. They come in three flavors:
• sensors that measure motion, e.g. how fast the device is moving
• sensors that measure the position of the device, e.g. where you are in the world or

the orientation of the device
• sensors that measure the local environment, e.g. illumination, air pressure, or

humidity

For example, my device has a three-axis accelerometer, which measures the forces
exerted on the device, such as when I shake it. It also has a 3-axis magnetic field
sensor, which can be used to measure it's position or orientation relative to the earth's
magnetic field - we'll see it in action later in one of the example applications. Lastly, my
device has a barometer that measures atmospheric pressure.

SensorManager & Sensor classes

For an application to use a sensor, it needs a reference to the SensorManager, which
is the system service that manages sensors. To get a reference to the SensorManager
call the getSystemService method, passing in the value Context.SENSOR_SERVICE.

To access a specific sensor, use the SensorManagerʼs getDefaultSensor method,
passing in a constant corresponding to the desired sensor. Some of those sensor type
constants include:
• Sensor.TYPE_ACCELEROMETER for the accelerometer
• Sensor.TYPE_MAGNETIC_FIELD for the magnetic field sensor
• Sensor.TYPE_PRESSURE for the barometer

SensorEvent & SensorEventListener

If an application wants to receive information from a sensor, it must implement a
SensorEventListener, an interface that defines callback methods that are invoked
when either a sensor's accuracy changes or the sensor acquires a new reading.

When a sensor's accuracy changes, Android calls the onAccuracyChanged method,
passing the sensor that changed and it's new accuracy. When a sensor has a new
reading, the onSensorChanged method is called, passing in the SensorEvent
corresponding to the new reading.

Before you can receive SensorEvents however you must register a
SensorEventListener, and when youʼre done with the Sensor, you'll must unregister the
Sensor and the SensorEventListener to avoid wasting battery power.

To register a SensorEventListener for a given sensor you call the registerListener
method, passing in the SensorEventListener that will be called back to for the sensor
you want to listen too and the rate at which you want the sensor to be polled.

To unregister a listener for all sensors with which it's registered you can, for instance,
call the unregisterListener method passing in the sensorEventListener, and passing in
a bitmask indicating the sensors you no longer want to listen to.

Sensor readings are represented as instances of the sensorEvent class. The data this
class holds, depends on the specific kind of sensor but will include:
• sensor type
• time-stamp
• accuracy of the reading
• measurement data for the new reading

To make sense of the data, you'll need to know how measurements are interpreted for
the specific sensor. For instance, many sensors use a 3-Dl coordinate system. When
the default orientation is portrait and when the device is lying flat face-up on a table, the
axes of the coordinate system are as shown here. The positive X-axis runs from to right
to left, the positive Y-axis runs from the top to the bottom of the device, and the positive
Z-axis runs perpendicularly upward from the screen of the device.

The coordinate system is oriented relative to the device, it moves and rotates with
the device.

When default orientation is
portrait & the device is
lying flat, face-up on a
table, axes run

X – right to left
Y – top to bottom
Z – Down to up

Our first example application for this lesson is called SensorShowValues. This
application displays the raw values that it receives from the device's accelerometer. As
you can see, this application displays three text views, with a number in each,
corresponding to the X, Y, and Z values being read from this device's accelerometer
.
The greatest force is now being exerted on the Y axis, but Iʼm failing to hold the device
perfectly straight up and down, and my hand shakes a bit and so the numbers will
dance around a bit. I will now rotate the device counter-clockwise 90 degrees, around
the Z-axis. Now the greatest force is being exerted on the X-axis. Let's rotate the device
another 90 degrees, and now you see again, that the greatest force is being exerted on
the Y-axis. But this time that force is negative, and that's because the y axis is now
upside down. And finally, i'll rotate the device another 90 degrees, and again you'll see
that the greatest force is exerted on the X-axis, and that that force is operating in the
negative direction.

Let's look at the source code for this applicationʼs main activity.

package course.examples.Sensors.ShowValues;

import android.app.Activity;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.TextView;

public class SensorRawAccelerometerActivity extends Activity
implements
 SensorEventListener {

 private static final int UPDATE_THRESHOLD = 500;
 private SensorManager mSensorManager;
 private Sensor mAccelerometer;

 private TextView mXValueView, mYValueView, mZValueView;
 private long mLastUpdate;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mXValueView = (TextView) findViewById(R.id.x_value_view);
 mYValueView = (TextView) findViewById(R.id.y_value_view);
 mZValueView = (TextView) findViewById(R.id.z_value_view);

 // Get reference to SensorManager
 mSensorManager = (SensorManager) getSystemService
 (SENSOR_SERVICE);

 // Get reference to Accelerometer
 if (null == (mAccelerometer = mSensorManager
 .getDefaultSensor(Sensor.TYPE_ACCELEROMETER)))
 finish();

 }

 // Register listener
 @Override
 protected void onResume() {
 super.onResume();

 mSensorManager.registerListener(this, mAccelerometer,
 SensorManager.SENSOR_DELAY_UI);

 mLastUpdate = System.currentTimeMillis();

 }

 // Unregister listener
 @Override
 protected void onPause() {
 mSensorManager.unregisterListener(this);
 super.onPause();
 }

 // Process new reading
 @Override
 public void onSensorChanged(SensorEvent event) {

 if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {

 long actualTime = System.currentTimeMillis();

 if (actualTime - mLastUpdate > UPDATE_THRESHOLD) {

 mLastUpdate = actualTime;

 float x = event.values[0], y = event.values[1],
 z = event.values[2];

 mXValueView.setText(String.valueOf(x));
 mYValueView.setText(String.valueOf(y));
 mZValueView.setText(String.valueOf(z));

 }
 }
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // N/A
 }
}

Notice that this class implements the SensorEventListener interface so we can receive
callbacks from the SensorManager. In onCreate we get the reference to
SensorManager. Next, we get a reference to the device's accelerometer by calling
SensorManager.getDefaultSensor, passing in the type
Sensor.TYPE_ACCELEROMETER.

In the onResume method, the application registers this class as a listener for
accelerometer event, by calling the registerListener method. The last parameter,
SensorManager.sensor_delay_UI, corresponds to a relatively low-frequency holding
rate.

Next, the onPause method unregisters this class as a listener for any and all sensors to
which it may be listening.

Scrolling down, we now come to the onSensorChanged method. This method first
checks to make sure that this event is an accelerometer reading. Next, it checks that a
certain amount of time has passed since the last reading was displayed. And if so, the
code records the accelerometer's x, y and z values, and then it displays those values on
the screen.

Filtering sensor values

In the example application that we just looked at, I tried to hold the device perfectly
straight up. And if I'd been able to do that, the accelerometer would ideally have
reported values around x equals 0 meters per second squared, y equals 9.81 meters
per second squared and Z equals 0 meters per second squared. But as you saw in the
example application, the accelerometers values fluctuated.

All applications will experience this kind of thing due to natural user movement, non flat
surfaces, electrical noise and so forth. When creating sensor-enabled applications,
developers will often apply transforms to the raw data to smooth it out. Two common
kinds of transforms are called low-pass filters and high-pass filters.

Low-pass filters are used to deemphasize small transient force changes while
emphasizing the long-term constant forces. You might use a low-pass filter when your
application needs to pay attention to the constant force of gravity for example, and you
don't want to be affected just because your hands shakes a little. A real life example of
this would be something like a carpenter's level. The bubble needs to move based on
gravity, not based on small hand twitches.

In contrast, you use a high-pass filter when you want to emphasize the transient force
changes, and you want to deemphasize the constant force components. You might use
a high-pass filter when your application should ignore the constant force of gravity for
example, but should respond to the specific moves that the user makes. A real life
example of this might be a percussion instrument like a set or maracas. You don't really
care about gravity here, you care about how the user is shaking the instrument.

The next application is called SensorFilteredAccelerometer. This application applies
both low pass and high pass filters to the raw accelerometer values and displays the
filtered values.

I'll start up the SensorFilteredAccelerometer application. As you can see, this application
displays 9 text views with numbers in them. These numbers correspond to the x, y, and
z values being read from the device's accelerometer. The raw values, after applying a
low pass filter and those raw values after applying a high pass filter.

If we let the application run for a while, we'll see that the low pass values begin to
approximate our ideal accelerometer readings roughly 0 for the x and z axes, and
roughly 9.81 for the y axis. At the same time, you can see that the high-pass values all
tend toward 0. If I rotate the device counterclockwise, you see the high pass x value go
positive. And if I rotate the device clockwise, you'll see the high pass x value go
negative.

Let's look at the source code for this applicationʼ main activity.

package course.examples.Sensors.ShowValues;

import android.app.Activity;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.TextView;

public class SensorFilteredValuesActivity extends Activity implements
 SensorEventListener {

 // References to SensorManager and accelerometer

 private SensorManager mSensorManager;
 private Sensor mAccelerometer;

 // Filtering constant

 private final float mAlpha = 0.8f;

 // Arrays for storing filtered values
 private float[] mGravity = new float[3];
 private float[] mAccel = new float[3];

 private TextView mXValueView, mYValueView, mZValueView,
 mXGravityView, mYGravityView,
 mZGravityView, mXAccelView, mYAccelView,
 mZAccelView;

 private long mLastUpdate;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mXValueView = (TextView) findViewById(R.id.x_value_view);
 mYValueView = (TextView) findViewById(R.id.y_value_view);
 mZValueView = (TextView) findViewById(R.id.z_value_view);

 mXGravityView = (TextView) findViewById
 (R.id.x_lowpass_view);
 mYGravityView = (TextView) findViewById
 (R.id.y_lowpass_view);
 mZGravityView = (TextView) findViewById
 (R.id.z_lowpass_view);

 mXAccelView = (TextView) findViewById
 (R.id.x_highpass_view);
 mYAccelView = (TextView) findViewById
 (R.id.y_highpass_view);
 mZAccelView = (TextView) findViewById
 (R.id.z_highpass_view);

 // Get reference to SensorManager
 mSensorManager = (SensorManager) getSystemService
 (SENSOR_SERVICE);

 // Get reference to Accelerometer
 if (null == (mAccelerometer = mSensorManager
 .getDefaultSensor(Sensor.TYPE_ACCELEROMETER)))
 finish();

 mLastUpdate = System.currentTimeMillis();
 }

 // Register listener
 @Override
 protected void onResume() {
 super.onResume();

 mSensorManager.registerListener(this, mAccelerometer,
 SensorManager.SENSOR_DELAY_UI);

 }

 // Unregister listener
 @Override
 protected void onPause() {
 super.onPause();

 mSensorManager.unregisterListener(this);
 }

 // Process new reading
 @Override
 public void onSensorChanged(SensorEvent event) {
 if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {
 long actualTime = System.currentTimeMillis();
 if (actualTime - mLastUpdate > 500) {
 mLastUpdate = actualTime;
 float rawX = event.values[0];
 float rawY = event.values[1];
 float rawZ = event.values[2];

 // Apply low-pass filter
 mGravity[0] = lowPass(rawX, mGravity[0]);
 mGravity[1] = lowPass(rawY, mGravity[1]);
 mGravity[2] = lowPass(rawZ, mGravity[2]);
 // Apply high-pass filter
 mAccel[0] = highPass(rawX, mGravity[0]);
 mAccel[1] = highPass(rawY, mGravity[1]);
 mAccel[2] = highPass(rawZ, mGravity[2]);

 mXValueView.setText(String.valueOf(rawX));
 mYValueView.setText(String.valueOf(rawY));
 mZValueView.setText(String.valueOf(rawZ));

 mXGravityView.setText(String.valueOf(mGravity
 [0]));
 mYGravityView.setText(String.valueOf(mGravity
 [1]));
 mZGravityView.setText(String.valueOf(mGravity
 [2]));

 mXAccelView.setText(String.valueOf(mAccel[0]));
 mYAccelView.setText(String.valueOf(mAccel[1]));
 mZAccelView.setText(String.valueOf(mAccel[2]));
 }
 }
 }

 // Deemphasize transient forces
 private float lowPass(float current, float gravity) {
 return gravity * mAlpha + current * (1 - mAlpha);

 }

 // Deemphasize constant forces
 private float highPass(float current, float gravity) {
 return current - gravity;
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // NA
 }
}

Notice again that this class implements the SensorEventListener interface, so it can
receive callbacks from the sensor manager.

In onCreate the application gets a reference to the SensorManager. Next, it gets a
reference to the device's accelerometer by calling SensorManager.getDefaultSensor
passing in the type constant that corresponds to the accelerometer.

In onResume the application registers this class as a listener for accelerometer events
by calling the registerListener method.

Next, onPause unregisters this class as a listener for any sensors to which it may be
listening.

Scrolling down, we now come to the onSensorChanged method. As before, this
method first checks to make sure that this event is an accelerometer reading. And then
it checks that a certain amount of time has passed since the last reading was displayed.
If it has, the code records the accelerometer's X, Y and Z values, and then applies the
low pass filter to each of the raw values, after which the code applies the high-pass filter
to each of the raw values.

Let's look at the code for the filters. Here's the lowPass method, which computes the
low-pass filtered values. This method takes 2 parameters: the current reading and the
long term average. It then computes the filter value, as, as a kind of weighted average.
In this case, the filtered value equals 80% of the long term average plus 20% of the
current reading. Over time, this calculation moves towards the ideal values that we
talked about earlier.

Scrolling down, here's the highPass method which computes the high-pass filtered
values. And this method also takes 2 parameters - the current reading, and the long
term average which is actually computed by the low pass method, that we just talked
about. This code then subtracts the long-term average from the current reading and
therefore represents the part of the reading that is not due to gravity.

The next example application is called SensorCompass and uses the device's
accelerometer and magnetometer to orient a compass arrow towards magnetic north.

I'll start up the SensorCompass application. As you can see, it displays a green circle
with a white arrow. Right now, this arrow points towards magnetic north. However if I
begin to rotate the device, you see that the arrow continues to point towards the north
which of course is exactly what a compass should do.

Let's look at the source code for this applicationʼs main activity:

package course.examples.compass;

import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.view.View;
import android.widget.RelativeLayout;

public class CompassActivity extends Activity implements
SensorEventListener {

 @SuppressWarnings("unused")
 private String TAG = "SensorCompass";

 // Main View
 private RelativeLayout mFrame;

 // Sensors & SensorManager
 private Sensor accelerometer;
 private Sensor magnetometer;
 private SensorManager mSensorManager;

 // Storage for Sensor readings
 private float[] mGravity = null;
 private float[] mGeomagnetic = null;

 // Rotation around the Z axis
 private double mRotationInDegress;

 // View showing the compass arrow
 private CompassArrowView mCompassArrow;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mFrame = (RelativeLayout) findViewById(R.id.frame);

 mCompassArrow = new CompassArrowView(getApplicationContext
());

 mFrame.addView(mCompassArrow);

 // Get a reference to the SensorManager
 mSensorManager = (SensorManager) getSystemService
 (SENSOR_SERVICE);

 // Get a reference to the accelerometer
 accelerometer = mSensorManager
 .getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 // Get a reference to the magnetometer
 magnetometer = mSensorManager
 .getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

 // Exit unless both sensors are available
 if (null == accelerometer || null == magnetometer)
 finish();

 }

 @Override
 protected void onResume() {
 super.onResume();

 // Register for sensor updates

 mSensorManager.registerListener(this, accelerometer,
 SensorManager.SENSOR_DELAY_NORMAL);

 mSensorManager.registerListener(this, magnetometer,
 SensorManager.SENSOR_DELAY_NORMAL);
 }

 @Override
 protected void onPause() {
 super.onPause();

 // Unregister all sensors
 mSensorManager.unregisterListener(this);

 }

 @Override
 public void onSensorChanged(SensorEvent event) {

 // Acquire accelerometer event data

 if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {

 mGravity = new float[3];
 System.arraycopy(event.values, 0, mGravity, 0, 3);

 }

 // Acquire magnetometer event data

 else if (event.sensor.getType() ==
 Sensor.TYPE_MAGNETIC_FIELD) {

 mGeomagnetic = new float[3];
 System.arraycopy(event.values, 0, mGeomagnetic, 0, 3);

 }

 // If we have readings from both sensors then
 // use the readings to compute the device's orientation
 // and then update the display.

 if (mGravity != null && mGeomagnetic != null) {

 float rotationMatrix[] = new float[9];

 // Users the accelerometer and magnetometer readings
 // to compute the device's rotation with respect to
 // a real world coordinate system

 boolean success = SensorManager.getRotationMatrix
 (rotationMatrix, null, mGravity, mGeomagnetic);

 if (success) {

 float orientationMatrix[] = new float[3];

 // Returns the device's orientation given
 // the rotationMatrix

 SensorManager.getOrientation(rotationMatrix,
 orientationMatrix);

 // Get the rotation, measured in radians, around
 // the Z-axis. Note: This assumes the device is
 // held flat and parallel to the ground

 float rotationInRadians = orientationMatrix[0];

 // Convert from radians to degrees
 mRotationInDegress = Math.toDegrees
 (rotationInRadians);

 // Request redraw
 mCompassArrow.invalidate();

 // Reset sensor event data arrays
 mGravity = mGeomagnetic = null;

 }
 }

 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // N/A
 }

 public class CompassArrowView extends View {

 Bitmap mBitmap = BitmapFactory.decodeResource(getResources
 (), R.drawable.arrow);
 int mBitmapWidth = mBitmap.getWidth();

 // Height and Width of Main View
 int mParentWidth;
 int mParentHeight;

 // Center of Main View
 int mParentCenterX;
 int mParentCenterY;

 // Top left position of this View
 int mViewTopX;
 int mViewLeftY;

 public CompassArrowView(Context context) {
 super(context);
 };

 // Compute location of compass arrow
 @Override
 protected void onSizeChanged(int w, int h, int oldw,
 int oldh) {
 mParentWidth = mFrame.getWidth();
 mParentHeight = mFrame.getHeight();

 mParentCenterX = mParentWidth / 2;
 mParentCenterY = mParentHeight / 2;

 mViewLeftY = mParentCenterX - mBitmapWidth / 2;
 mViewTopX = mParentCenterY - mBitmapWidth / 2;
 }

 // Redraw the compass arrow
 @Override
 protected void onDraw(Canvas canvas) {

 // Save the canvas
 canvas.save();

 // Rotate this View
 canvas.rotate((float) -mRotationInDegress,
 mParentCenterX, mParentCenterY);

 // Redraw this View
 canvas.drawBitmap(mBitmap, mViewLeftY, mViewTopX,
 null);

 // Restore the canvas
 canvas.restore();

 }
 }
}

Lets scroll to the onCreate method. As with the other applications, this one begins by
setting up the user interface, and in particular, it creates a custom view that holds the
compass arrow and then it adds that view to the activityʼs main view. It then gets a
reference to the sensor manager. After that, it gets a reference to the device's

accelerometer and it gets a reference to the device's magnetometer by calling
SensorManager.getdefaultsensor and passing in the appropriate type constants.

In the onResume method, the code registers this class a listener for accelerometer
events and for magnetometer events, by calling the registerListener method.

The onPause method unregisters this class as a listener for all sensors.

The onSensorChange method processes the incoming sensor events. First it
deteimines whether the event is an accelerometer or a magnetometer event and then
copies the appropriate event data. Next, if there are readings from each of the 2
sensors, the code calls the SensorManager.getRotationMatrix method passing in the
sensor readings and an array in which to store the rotation matrix.

If that method iss successful, the code calls the SensorManager.getOrientation
method passing in the rotation matrix that we just acquired from the call to get rotation
matrix. It also passes in another array called orientationMatrix. When this method
returns, orientation matrix will hold the information the application needs to determine
how the device is oriented with respect to the earth's magnetic north.

The code then grabs the result value from the orientationMatrix and, since this value is
measured in radians, the code then converts the radian value to degrees. Then, the
code invalidates the compassArrowView and clears the arrays that holds the sensor
readings.

Let's look at the compassArrowView to see how it uses the new orientation
information. Scrolling down to the onDraw method, the code first saves the current
canvas and then rotates this view on the canvas by an amount equal to (-1)*mRotation
in degrees. So basically, the idea here is that if the device is pointing say 90 degrees
away from north, then the compass arrow must rotate back 90 degrees in order for the
compass arrow to keep pointing north.

That's all for this lesson on sensors. See you next time when we'll talk about location
and maps.

Week 8 - Data Management
Handheld systems can generate and manipulate large amounts of data. Android
provides a number of support classes that allow you to manage data across multiple
application sessions. In today's lesson, I'll talk about several of these support classes.
I'll begin by talking about the SharedPreferences class, which allows applications to
store and manage small amounts of primitive data. Next, I'll talk about writing files to
both internal and external storage. Last, I'll discuss the creation and use of complex
SQLite databases.

Your applications will typically use the SharedPreferences class when you want to
store small amounts of primitive data, such as a user name. Your applications will
typically use internal device storage, when you need to manage small to medium
amounts of data that should remain private to the application, such as temporary files
that are used by the application. Your applications will typically use external storage
when you want to store larger amounts of non-private data, such as songs or video files.
And your application will typically use databases when you intend to store small to
large to amounts of private structured data.

SharedPreferences

SharedPreferences are essentially persistent maps and like any map they hold key-
value pairs of simple data types, e.g. strings and floats. SharedPreferences are
automatically persisted across application sessions, which allows a user to create
information, exit the application and restart it later, getting access to the information they
created earlier. SharedPreferences are often used for long-term storage of customizable
application data, such as a username, favorite WiFi networks, specific user options or
preferences.

To associate a SharedPreferences object with an activity, you can use the
Activity.getPreferences method, passing in an access mode as a parameter. For
example, this mode can be mode_private, indicating that the data is private to the
calling application:

Activity.getPreferences (int mode)
mode = MODE_PRIVATE

If you want a SharedPreferences object that is not associated with a specific activity,
then you can use the context.getSharedPreferences method, to retrieve a named
SharedPreferences object:

•Context.getSharedPreferences (String name, int mode)
name = name of the SharedPreferences file
mode = MODE_PRIVATE

With the above method, you pass in a name for the SharedPreferences object and an
access mode, such as the mode_private that we saw earlier.

Once you've acquired a SharedPreferences object, you can edit that object:
• SharedPreferences.edit() - returns an instance of SharedPreferences.Editor

You can then add or change the values of the SharedPreferences object:
• SharedPreferences.Editor.putInt(String key, int value)
• SharedPreferences.Editor.putString(String key, String value)
• SharedPreferences.Editor.remove(String key)

After making the desired changes, you can make them permanent by calling the
method:
•SharedPreferences.Editor.commit()

At this point, the SharedPreferences object is saved, and an application can exit secure
that the data can be retrieved during a later session.

To read these values later, an application can get a SharedPreferences object and use
various methods to read out the stored values:

• getAll() - get the SharedPreferences values
• getBoolean(String key, ...) - get a particular Boolean value
• getString(String key, ...) - get a particular String value

The first example application is called DataManagementSharedPreferences. It has a
button labeled Play, which when presses displays a random number. The application
keeps track of the highest number seen so far, and saves that number across different
user sessions.

When this application starts it shows that the high score is currently zero. When I press
the Play button a new number is displayed in the center of the screen. When the
number is higher than the previous high score, the high score display is updated to
show the new number.

Now, remember this high score. I'll quit the application and restart it: observe the current
high score is the same as it was the last time we ran the application. Now let me hit the
Play button a few more times to increase the high score. I'll stop the application again
and restart it ... again the application displays the high score from the last use of the
application. I can also hit the Reset button to clear the high score.

Let's look at the source code for this applicationʼs main activity:

package course.examples.DataManagement.SharedPreferences;

import java.util.Random;

import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class SharedPreferenceReadWriteActivity extends Activity {
 private static String HIGH_SCORE = "high_score";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 final SharedPreferences prefs = getPreferences
 (MODE_PRIVATE);

 setContentView(R.layout.main);

 // High Score
 final TextView highScore = (TextView) findViewById
 (R.id.high_score_text);
 highScore.setText(String.valueOf(prefs.getInt(
 HIGH_SCORE, 0)));

 //Game Score
 final TextView gameScore = (TextView) findViewById
 (R.id.game_score_text);
 gameScore.setText(String.valueOf("0"));

 // Play Button
 final Button playButton = (Button) findViewById
 (R.id.play_button);
 playButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {

 Random r = new Random();
 int val = r.nextInt(1000);
 gameScore.setText(String.valueOf(val));

 // Get Stored High Score
 if (val > prefs.getInt(HIGH_SCORE, 0)) {

 // Get and edit high score
 SharedPreferences.Editor editor =
 prefs.edit();
 editor.putInt(HIGH_SCORE, val);
 editor.commit();

 highScore.setText(String.valueOf(val));

 }
 }
 });

 // Reset Button
 final Button resetButton = (Button) findViewById
 (R.id.reset_button);
 resetButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {

 // Set high score to 0
 SharedPreferences.Editor editor = prefs.edit();
 editor.putInt(HIGH_SCORE, 0);
 editor.commit();

 highScore.setText(String.valueOf("0"));
 gameScore.setText(String.valueOf("0"));
 }
 });
 }
}

In onCreate, the code acquires the SharedPreferences object for this activity. Next,
when the user clicks the Play button, the code generates a new score, which it stores in
a variable called Val. After that, the code calls getInt on the Preferences object, to
retrieve the current high score.

If Val is greater than the current high score, then we need to update the high score. So
the code calls the edit method on the Preferences object, which returns a
SharedPreferences.Editor object.

Next, the code calls putInt on the editor object to update the high score, to the current
value. And finally, the code calls commit on the editor, to save the current high score.

User Preferences

The Shared Preferences class is often used to store an application's user preferences.
Android provides a PreferenceFragment class to display and modify user preferences.

This next example application, DataManagementPreferenceActivity, does just this. In
this case, the preference is the name the application uses when addressing the user.
Let's take a look.

When the application starts up it presents a single button, labeled View User Name, that
presents the Preference Fragment, letting me view and change my current user name.
As you can see, my User Name has not yet been set, so I'll click on this area. A dialog
box pops up, asking me to enter my User Name. Iʼll enter the new name and click on
the Submit. The dialog box closes, and my new User Name is displayed.

Now I'll close the application, and restart it - observe that my User Name is unchanged -
the information persisted across user sessions.

Let's see source code for the applicationʼs ViewAndUpdatePreferencesActivity, which
is the one that starts when the user clicks the View User Name button.

package course.examples.DataManagement.PreferenceActivity;

import android.app.Activity;
import android.content.SharedPreferences;
import
android.content.SharedPreferences.OnSharedPreferenceChangeListener;
import android.os.Bundle;
import android.preference.Preference;
import android.preference.PreferenceFragment;

public class ViewAndUpdatePreferencesActivity extends Activity {

 private static final String USERNAME = "uname";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.user_prefs_fragment);
 }

 // Fragment that displays the username preference
 public static class UserPreferenceFragment extends
 PreferenceFragment {

 protected static final String TAG = "UserPrefsFragment";
 private OnSharedPreferenceChangeListener mListener;
 private Preference mUserNamePreference;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Load the preferences from an XML resource
 addPreferencesFromResource(R.xml.user_prefs);

 // Get the username Preference
 mUserNamePreference = (Preference)
 getPreferenceManager().findPreference(USERNAME);

 // Attach a listener to update summary when username
 // changes
 mListener = new OnSharedPreferenceChangeListener() {
 @Override
 public void onSharedPreferenceChanged(
 SharedPreferences sharedPreferences, String
 key) {
 mUserNamePreference.setSummary
 (sharedPreferences.getString(
 USERNAME, "None Set"));
 }
 };

 // Get SharedPreferences object managed by the
 // PreferenceManager for this Fragment
 SharedPreferences prefs = getPreferenceManager()
 .getSharedPreferences();

 // Register a listener on the SharedPreferences object
 prefs.registerOnSharedPreferenceChangeListener
 (mListener);

 // Invoke callback manually to display the current
 // username
 mListener.onSharedPreferenceChanged(prefs, USERNAME);
 }
 }
}

The onCreate method first calls setContentView, passing in an XML file called User
_prefs_fragment.xml. And this layout file instantiates and displays an instance of the
UserPreferenceFragment class, which is defined further down in this same file. This
class's onCreate method first calls the AddPreferencesFromResource method,
passing in the user_preps.xml file from the res/xml directory.

Let's open that file:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/
android"
 android:key="@+id/pref_screen" >

 <EditTextPreference
 android:dialogMessage="Enter Your User Name"
 android:dialogTitle="Change User Name"
 android:key="uname"
 android:negativeButtonText="Cancel"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

 android:positiveButtonText="Submit"
 android:title="User Name"
 >
 </EditTextPreference>
</PreferenceScreen>

As you can see, this file defines a preference screen resource. This preference screen,
contains one preference that's displayed in an edit text box with the key “u_name”, and i
title “User Name”.

When the user clicks on the EditTextBox to change the User Name, a dialog box pops
up with the title “Change User Name”, a message saying “Enter your User Name”, and
two buttons labelled “Cancel” and “Submit”.

Internal Storage

Android also supports the use of files. File is a class that represents a file system entity
identified by a path name. In Android, storage areas are classified as being either
internal or external. Historically, this distinguished between the internal flash memory
on a device, and the removable external memory cards attached to the device. Today,
not all external memory is removable. Internal memory, is usually used for smaller data
sets that are private to an application. External memory, is usually reserved for larger
non-private data sets, such as music files and pictures.

The next example applications use files to store information. One of the methods they
use are OpenFileOutput, which opens a private file for writing. This method will also
create a physical file if it doesn't already exist. Another method is OpenFileInput, which
opens a private file for reading. There are, of course, many other file related methods,
so please look at the documentation for more information.

The next example application is called DataManagementFileInternalMemory. When it
starts it checks whether a particular text file exists. If it does not the application creates
that file and writes some text into it. Then the application opens that same file, reads the
text from it, and displays it. Let's take a look at this application:

As you can see, the application has displayed some text on the screen.

Let's look at the source code for this application to find out where that text came from:

package course.examples.DataManagement.FileInternal;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.widget.LinearLayout;
import android.widget.TextView;
import course.examples.Files.FileWriteAndRead.R;

public class InternalFileWriteReadActivity extends Activity {

 private final static String fileName = "TestFile.txt";
 private String TAG = "InternalFileWriteReadActivity";

 @Override
 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 LinearLayout ll = (LinearLayout) findViewById
 (R.id.linearLayout);

 // Check whether fileName already exists in directory used
 // by the openFileOutput() method.
 // If the text file doesn't exist, then create it now

 if (!getFileStreamPath(fileName).exists()) {
 try {
 writeFile();
 } catch (FileNotFoundException e) {
 Log.i(TAG, "FileNotFoundException");
 }
 }

 // Read the data from the text file and display it
 try {
 readFile(ll);
 } catch (IOException e) {
 Log.i(TAG, "IOException");
 }
 }

 private void writeFile() throws FileNotFoundException {

 FileOutputStream fos = openFileOutput(fileName,
 MODE_PRIVATE);
 PrintWriter pw = new PrintWriter(new BufferedWriter(
 new OutputStreamWriter(fos)));
 pw.println(
 "Line 1: This is a test of the File Writing API");
 pw.println(
 "Line 2: This is a test of the File Writing API");
 pw.println(
 "Line 3: This is a test of the File Writing API");
 pw.close();

 }

 private void readFile(LinearLayout ll) throws IOException {
 FileInputStream fis = openFileInput(fileName);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(fis));
 String line = "";

 while (null != (line = br.readLine())) {
 TextView tv = new TextView(this);
 tv.setTextSize(24);
 tv.setText(line);
 ll.addView(tv);
 }
 br.close();
 }
}

Here's the applicationʼs main activity. In the onCreate method, the code first gets the
file path string associated with the file name, TestFile.txt. If that file does not exist the
WriteFile method is called. Let's scroll down and look at that method:

This method first calls the OpenFileOutput method, which returns a file output stream.
The code then writes three lines of text to the text file and than closes the file.

Let's scroll back up to the onCreate method. The code continues by calling the
readFile method, passing in a LinearLayout for displaying the text. The readFile method
now opens the text file for input and reads lines of text from the file. Each line is placed
in a TextView, which is added to the linear layout.

External Storage

Android also allows applications to write to external memory. When you do this,
however, you must consider the additional twist that external memory can be
removable, e.g. an SD card. Removable media can appear or disappear without
warning so, before you write to external memory you first need to determine its state.

Now one way to do this is by using a method of the Environment class:
getExternalStorageState(), which returns a String indicating the current state of the
device's external memory. Some of those values are shown here:

String Environment.getExternalStorageState()
• MEDIA_MOUNTED - present & mounted with read/write access
• MEDIA_MOUNTED_READ_ONLY - present & mounted with read-only access
• MEDIA_REMOVED - not present
• etc.

If your application wishes to write to external memory it will need to request the
WRITE_EXTERNAL_STORAGE permission in the application's AndroidManifest.xml
file:

<uses-permission android:name=
“android.permission.WRITE_EXTERNAL_STORAGE" />

The next example application, DataManagementFileExternalMemory, reads an image
file from the res/raw directory, copies the file to external storage, reads the image data
back, and displays it on the screen. Let's take a look at that application right now:

When I start the application, an image is displayed on the screen.

Let's look at the source code for the applicationʼs main activity. I

package course.examples.DataManagement.FileExternal;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import android.app.Activity;
import android.net.Uri;
import android.os.Bundle;

import android.os.Environment;
import android.util.Log;
import android.widget.ImageView;
import course.examples.Files.FileWriteAndRead.R;

public class ExternalFileWriteReadActivity extends Activity {
 private final String fileName = "painter.png";
 private String TAG = "ExternalFileWriteReadActivity";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 if (Environment.MEDIA_MOUNTED.equals(Environment
 .getExternalStorageState())) {

 File outFile = new File(getExternalFilesDir
 (Environment.DIRECTORY_PICTURES),
 fileName);

 if (!outFile.exists())
 copyImageToMemory(outFile);

 ImageView imageview = (ImageView) findViewById
 (R.id.image);
 imageview.setImageURI(Uri.parse("file://" +
 outFile.getAbsolutePath()));
 }
 }

 private void copyImageToMemory(File outFile) {
 try {

 BufferedOutputStream os = new BufferedOutputStream(
 new FileOutputStream(outFile));
 BufferedInputStream is = new BufferedInputStream(
 getResources().openRawResource(
 R.raw.painter));
 copy(is, os);

 } catch (FileNotFoundException e) {
 Log.e(TAG, "FileNotFoundException");
 }
 }

 private void copy(InputStream is, OutputStream os) {
 final byte[] buf = new byte[1024];
 int numBytes;
 try {
 while (-1 != (numBytes = is.read(buf))) {
 os.write(buf, 0, numBytes);
 }
 } catch (IOException e) {

 e.printStackTrace();
 } finally {
 try {
 is.close();
 os.close();
 } catch (IOException e) {
 Log.e(TAG, "IOException");
 }
 }
 }
}

In the onCreate method, the code checks the external storage state to ensure that the
media is mounted, and that it is readable and writable. Then the code gets the external
file directory where pictures are normally stored and constructs a new file object
pointing to that directory. Next, it checks whether the file actually exists on the external
memory.

The code then calls the copyImageDataToMemory method. Let's look at that method.

This method starts by creating a new output stream, that will be used to write to a file on
the external memory. Then, it creates an input stream so it can read image data from
the res/raw directory. And finally, it copies the data from the input stream to the output
stream. When the method completes there will be a new file in external memory. Back in
the onCreate method, the code gets a reference to an image view, and inserts the
image URI for the file that was just created.

If your application creates temporary files, then you may consider writing these to cache
directories instead. Cache files are temporary files that may be deleted by the system,
when storage is low. Also, they are removed when the application is uninstalled.

You can get access to the Cache directory, by using the getCacheDir method of the
Context class. This method returns the absolute path to an application-specific directory
that can be used for temporary files. You can also use the getExternalCacheDir
method of the context class, which returns a file object representing a directory for
Cache files in external storage.

SQLite Databases

When your application reads and uses larger amounts of structured and complex data,
you may want to put that data in a database. Android provides an implementation of
SQLite, which allows applications to create and use in-memory relational databases.

SQLite is designed to operate within a very small footprint, say, less than 300 kB of
storage. SQLIte is however, a full-fledged relational database. It implements most of the

SQL92 standard, and it supports highly reliable ACID transitions, which means that
it's transactions are atomic, consistent, isolated, and durable.

To use an SQL database in your applications, Android recommends that you use a
helper class called SQLiteOpenHelper, which you can subclass. In the constructor you
must call the super classʼs constructor, passing in some information about the database
you want to create. Next, override the onCreate method and the onUpgrade method.
In onCreate, you'll execute one or more CREATE_TABLE commands, which define the
database's structure and layout.

After that, use the SQLiteOpenHelper methods to open and return the underlying
SQLite database, and to execute operations on it.

Our last example application is called DataManagementSQL, which creates an SQLite
database and then inserts several records into the database, some with errors. The
application will also display a button labeled Fix - when the user presses it the
application will delete and update some of those records that were just inserted and
then display the updated database records on the screen.

Let's take a look at this application now:

As you can see, it displays four database records, each containing a record ID, and the
name of an artist. The fix button is at the bottom of the screen. When I press it record
number two, Lady Gaga, will be deleted, and record number three, Johnny Cash, will be
updated to correctly spell the artist's first name. Let me hit the Fix button now. As you
can see, record number two has been deleted, and record number three now shows the
correct spelling of Johnny Cash's first name.

Let's look at the source code for this applicationʼs main activity.

package course.examples.DataManagement.DataBaseExample;

import android.app.ListActivity;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.SimpleCursorAdapter;

public class DatabaseExampleActivity extends ListActivity {

 private SQLiteDatabase mDB = null;
 private DatabaseOpenHelper mDbHelper;
 private SimpleCursorAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Create a new DatabaseHelper
 mDbHelper = new DatabaseOpenHelper(this);

 // Get the underlying database for writing
 mDB = mDbHelper.getWritableDatabase();

 // start with an empty database
 clearAll();

 // Insert records
 insertArtists();

 // Create a cursor

 Cursor c = readArtists();
 mAdapter = new SimpleCursorAdapter(this,
 R.layout.list_layout, c,
 DatabaseOpenHelper.columns, new int[] {
 R.id._id, R.id.name }, 0);

 setListAdapter(mAdapter);

 Button fixButton = (Button) findViewById
 (R.id.fix_button);
 fixButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 // execute database operations
 fix();

 // Redisplay data
 mAdapter.getCursor().requery();
 mAdapter.notifyDataSetChanged();
 }
 });

 }

 // Insert several artist records
 private void insertArtists() {
 ContentValues values = new ContentValues();
 values.put(DatabaseOpenHelper.ARTIST_NAME,
 "Frank Sinatra");
 mDB.insert(DatabaseOpenHelper.TABLE_NAME,
 null, values);

 values.clear();
 values.put(DatabaseOpenHelper.ARTIST_NAME,
 "Lady Gaga");
 mDB.insert(DatabaseOpenHelper.TABLE_NAME,
 null, values);

 values.clear();
 values.put(DatabaseOpenHelper.ARTIST_NAME,
 "Jawny Cash");
 mDB.insert(DatabaseOpenHelper.TABLE_NAME,
 null, values);

 values.clear();

 values.put(DatabaseOpenHelper.ARTIST_NAME,
 "Ludwig von Beethoven");
 mDB.insert(DatabaseOpenHelper.TABLE_NAME,
 null, values);
 }

 // Returns all artist records in the database
 private Cursor readArtists() {
 return mDB.query(DatabaseOpenHelper.TABLE_NAME,
 DatabaseOpenHelper.columns, null,
 new String[] {}, null, null, null);
 }

 // Modify the contents of the database
 private void fix() {
 // Sorry Lady Gaga :-(
 mDB.delete(DatabaseOpenHelper.TABLE_NAME,
 DatabaseOpenHelper.ARTIST_NAME + "=?",
 new String[] { "Lady Gaga" });

 // fix the Man in Black
 ContentValues values = new ContentValues();
 values.put(DatabaseOpenHelper.ARTIST_NAME,
 "Johnny Cash");

 mDB.update(DatabaseOpenHelper.TABLE_NAME, values,
 DatabaseOpenHelper.ARTIST_NAME + "=?",
 new String[] { "Jawny Cash" });
 }

 // Delete all records
 private void clearAll() {
 mDB.delete(DatabaseOpenHelper.TABLE_NAME, null, null);
 }

 // Close database
 @Override
 protected void onDestroy() {
 mDB.close();
 mDbHelper.deleteDatabase();
 super.onDestroy();
 }
}

In the onCreate method, we begin by creating a new DatabaseOpenHelper instance.
And that class is a subclass of SQLiteOpenHelper.

Let's take a look at that class. The constructor for this class calls the superclass's
constructor, passing in information such as the name of the database, and a version
number. This class's onCreate method receives an SQLiteDatabase object and then
calls its ExecSQL method, passing in a string, which corresponds to an actual SQL
command that will create a table named Artists. This table will contain two fields, an
integer ID, and a string for the artist's name. This class also has a DeleteDatabase
method, which simply deletes the database.

Going back to the main activity, the onCreate method continues by getting a reference
to the underlying data base that can be used for reading and writing. Next, it calls the
clearAll method, which just deletes every record in the database.

After that, the code calls the insertArtist method, which inserts a number of records
into the database. This method first creates a ContentValues object, and then puts
information into that object corresponding, in this case, to the artist's name, Frank
Sinatra. Next, it inserts the record into the Artist table by calling the insert method. The
ID field is auto generated by the database, so the application doesn't need to include it
here. Next, the code clears out the values object, and then adds a second record for
Lady Gaga, a third record for Johnny Cash, and a fourth record for Ludwig van
Beethoven.

Going back up to the onCreate method, the code calls the readArtist method, which
reads all the records in the database, and returns a cursor object. A cursor is
essentially an iterator over a set of records returned by a query operation. This cursor is
used to create an Adapter for the ListView that will display these records on the
display.

And finally, the code sets a Listener on the Fix button. When the user presses this
button, the code calls the Fix method.

Let's scroll down to that method. The Fix method first calls the Delete method, which
finds the record with the artist name Lady Gaga, and then deletes it. And after that, the
method creates a ContentValues object that has the correct spelling of the name
Johnny. It then performs an update operation that first finds the record with the
misspelled name, and then replaces it with the correct spelling.

When you need to debug your database applications, there are several things you
might need to know:

The database files are stored in the data/data/package name/databases directory. You
can examine these files by first opening a shell to the emulator or to your device with
ADB. For instance, if your emulator's name is emulator-5554, then you can issue this
command to open a shell.

Once the shell is open, you can then use the SQLite3 command to open the connection
to the database itself. From there, you can type, for example, .help to get more
information about the specific commands this program understands.

Databases stored in
/data/data/<package name>/databases/

Can examine database with sqlite3
adb -s emulator-5554 shell
sqlite3 /data/data/
course.examples.DataManagement.Data
BaseExample/databases/artist_dbd

That's all for our lesson on Data Management. Please join me next time, when we'll
discuss the ContentProvider class.

Week 8 - Services
Much of our discussion of Android so far has focused around the Activity class and the
associated UI objects. We've also talked about Broadcast Receivers and Content
Providers. The fourth fundamental Android component is the Service Class, which is
designed to support longer-running operations that are not usually visible to the user,
such as downloading large data files from the network, or synchronizing on-
device information with the network server.

In this lesson I'll begin by giving an overview of the Service class, and then Iʼll talk
about how you implement relatively simple services that can be started by clients. I'll
finish up by talking about how you implement more complex services that clients can
bind to and interact with.

Services do not interact directly with users, so they lack user interfaces. Services have
two main uses:
• They allow you to work in the background even if the services application terminates,

i.e. performing background processing
• They allow code in one process to interact with code in another process, i.e.

supporting remote method execution

Components that want to use a service, but don't need to directly interact with it, can
start that service by calling the Context classʼs startService method, passing in an
intent associated with that specific service.

Context.startService(Intent intent)

Once started, the service can run in the background indefinitely. Like any component,
Android can kill a service if it needs that service's resources.

Started services are usually designed to perform a single operation, after which they
terminate themselves without transferring any results back to the component that
started them. By default, services run in the main thread of their hosting application.
Depending on how you implement and use a service, you may need to create a
separate thread for it.

In contrast, components that want to use a service, but do need to directly interact with
it, can bind to that service by calling the bindService method, passing in an Intent
associated with a specific service, a ServiceConnection object, which implements
callback methods when the client is connected to or disconnected from the service, and
flags that control the behavior of the binding operation.

Context.bindService(Intent service, ServiceConnection conn,
int flags)

Binding to a service allows a component to send requests to and receive responses
from a service running in either the same process or a different one. At binding time, if
the service is not already started, it will be started. Once bound, the service will continue
running as long as at least one client remains bound to it.

Implementing Started Services

Here's my device, now I'll start the LocalLoggingService application. As you can see,
this application displays a single button labeled Generate Log Message.

When I click this button, a service will be started, and that service will write a message
to the log. When I hit the button the LogCat view shows a log message that was written
by application.

Let's look at the source code for this applicationʼs LoggingServiceClient class.

package course.examples.Services.LocalLoggingService;

import android.app.Activity;
import android.content.Intent;

import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class LoggingServiceClient extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 final Button messageButton = (Button) findViewById
 (R.id.message_button);
 messageButton.setOnClickListener
 new OnClickListener() {
 public void onClick(View v) {
 // Create an Intent for starting the
 // LoggingService
 Intent startServiceIntent =
 new Intent(getApplicationContext(),
 LoggingService.class);

 // Put Logging message in intent
 startServiceIntent.
 putExtra(LoggingService.EXTRA_LOG,
 "Log this message");

 // Start the Service
 startService(startServiceIntent);
 }
 });
 }
}

In onCreate, the code first creates an Intent that will be used to start the
LoggingService object. Next, the code adds the message to be logged as an extra to
the startServiceIntent. And lastly, the code calls the startService method, passing in
the Intent.

Now, I'll open up a LoggingService class, which extends IntentService.

package course.examples.Services.LocalLoggingService;

import android.app.IntentService;
import android.content.Intent;
import android.util.Log;

public class LoggingService extends IntentService {
 public static String EXTRA_LOG =
 "course.examples.Services.Logging.MESSAGE";
 private static final String TAG = "LoggingService";
 public LoggingService() {
 super(TAG);
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 Log.i(TAG, intent.getStringExtra(EXTRA_LOG));
 }
}

It is started by the system and thereafter it queues incoming intents and hands them off,
one at a time, to the onHandleIntent method. In this case, that method simply writes
the incoming message to the log.

Our next example application is called MusicPlayingServiceExample, where a client
activity starts a service that plays a music file. The service plays the music in what's
called the Foreground state, which means the service will be doing something that the
user be aware of and, therefore, Android should refrain from killing this service if the
system gets low on memory. As with any service, the music playing service will keep
playing even if the client activity pauses or terminates.

Let's watch this application run:

As you can see, there are now two buttons shown on the display. The top one is labeled
Start Service, and the bottom one is labeled Stop Service. Pressing these buttons starts
or stops a service that is hosted by this application. Let me start by pressing the start
button, and as you can hear, when I press the start button, music started playing. You
also notice that there's also a notification up in the status bar.

Now, I'll back out of this application and, even though I've killed the application, the
service is still playing the music. Pulling down on the notification drawer, and clicking on
the Notification View which restarts the application, I'll press the Stop Service button.
The service and the music that it was playing both stop.

Let's look at the source code for this application in MusicServiceClient.java:

package course.examples.Services.MusicService;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class MusicServiceClient extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // Intent used for starting the MusicService
 final Intent musicServiceIntent = new Intent
 (getApplicationContext(), MusicService.class);

 final Button startButton = (Button) findViewById
 (R.id.start_button);
 startButton.setOnClickListener(new OnClickListener() {
 public void onClick(View src) {

 // Start the MusicService using the Intent
 startService(musicServiceIntent);

 }
 });

 final Button stopButton = (Button) findViewById
 (R.id.stop_button);
 stopButton.setOnClickListener(new OnClickListener() {
 public void onClick(View src) {

 // Stop the MusicService using the Intent

 stopService(musicServiceIntent);
 }
 });
 }
}

In onCreate, this code first creates an Intent, that will be used to start the MusicService
class. Next the code sets up listeners for the startButton and for the stopButton. The
startButton and listener calls the startService method, passing in the
musicServiceIntent. And the stopButton calls the stopService method, also passing in
the same musicServiceIntent.

Letʼs take a look now at the MusicService class:

package course.examples.Services.MusicService;

import android.app.Notification;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Intent;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;
import android.os.IBinder;

public class MusicService extends Service {

 @SuppressWarnings("unused")
 private final String TAG = "MusicService";

 private static final int NOTIFICATION_ID = 1;
 private MediaPlayer mPlayer;
 private int mStartID;

 @Override
 public void onCreate() {
 super.onCreate();

 // Set up the Media Player
 mPlayer = MediaPlayer.create(this, R.raw.badnews);

 if (null != mPlayer) {

 mPlayer.setLooping(false);

 // Stop Service when music has finished playing
 mPlayer.setOnCompletionListener(
 new OnCompletionListener() {

 @Override
 public void onCompletion(MediaPlayer mp) {

 // stop Service if it was started with this ID

 // Otherwise let other start commands proceed
 stopSelf(mStartID);
 }
 });
 }

 // Create a notification area notification so the user
 // can get back to the MusicServiceClient

 final Intent notificationIntent = new Intent(
 getApplicationContext(), MusicServiceClient.class);
 final PendingIntent pendingIntent =
 PendingIntent.getActivity(this, 0,
 notificationIntent, 0);
 final Notification notification = new Notification.Builder(
 getApplicationContext())
 .setSmallIcon(android.R.drawable.ic_media_play)
 .setOngoing(true).setContentTitle(
 "Music Playing")
 .setContentText("Click to Access Music Player")
 .setContentIntent(pendingIntent).build();

 // Put this Service in a foreground state, so it won't
 // readily be killed by the system
 startForeground(NOTIFICATION_ID, notification);
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startid)
 { if (null != mPlayer) {
 // ID for this start command
 mStartID = startid;
 if (mPlayer.isPlaying()) {
 // Rewind to beginning of song
 mPlayer.seekTo(0);
 } else {
 // Start playing song
 mPlayer.start();
 }
 }
 // Don't automatically restart this Service if it is killed
 return START_NOT_STICKY;
 }
 @Override
 public void onDestroy() {
 if (null != mPlayer) {
 mPlayer.stop();
 mPlayer.release();
 }
 }
 // Can't bind to this Service
 @Override
 public IBinder onBind(Intent intent) {
 return null;

 }
}

Here, in onCreate this code begins by setting up a new MediaPlayer. It also attaches
an onCompletionListener to the MediaPlayer, which will stop the service when the
music finishes playing. Next, the code creates a notification area notification, so that
the user can exit the music player service client, but still have a way to get back to the
client in order to shut down the music player.

Continuing down, the code calls the startForeground method, which puts this service
in a foreground state that it is less likely to be killed if the system needs more resources.
Next the code overrides the onStartCommand method, which is called when a client
calls the start service command. The code in this method checks to see whether the
media player exists, and if so, it then saves the current start command ID and then
makes the media player play the song from the beginning. This method ends by
returning a value that tells the system what to do if the service is killed by the system. In
this case, that value is START_NOT_STICKY, which means that the system should not
automatically restart the service if it gets killed.

Implementing Bound Services

Some services work independently of other components. They get started, they do their
work, and they quit. Other services are instead meant to receive requests and to
provide responses to other components. Sometimes those components are running in
the same application or process as the service and sometimes they are not. In these
cases, components will need to bind to the service. That is, they need to open and
maintain a connection to the service so they can interact with it.

If the component and the service are running in different processes, then there are two
common approaches for designing a service and for binding to that service. The first
approach is to use the Messenger class. The second is to define a remote interface to
the service using the AIDL language and tools. Let's talk about each of these one at a
time.

The Messenger class manages a handler. Using a Messenger allows messages to be
sent from one component to another component across process boundaries. Once
sent, messages are then queued and processed sequentially by the receiving
component. You should use this approach only if your service can tolerate sequential
access.

For this approach to work, you'll have to implement the client components and the
service so that they can send and receive Messenger messages.

On the service side, your service will have to create a Handler for receiving and
processing specific messages. The service will also have to create a Messenger that
supplies back to any client a Binder object that binds to this service.

On the client side, the client binds to the service and eventually gets back a binder
object that it uses to create its own Messenger, which can send messages to the
Handler, where they are processed by the service.

Our next example applications are called LoggingServiceWithMessengerClient and
LoggingServiceWithMessenger. With these applications, a client sends log messages
to a remote logging service, which is implemented in a separate application. A remote
logging service takes these messages and then writes them to the log.

Let's run these applications now. First, I'll start the LoggingServiceWithMessenger
application:

As you can see, there's a single button, labeled Generate Log Message. Let me click on
that now. Let's take a look at the log console to make sure that the message was
actually written. In my IDE, open the LogCat view. And here you can see the log
message that was written by the log in service.

Let's look a the source code for this application, LoggingServiceWithMessenger,
starting with the LoggingService class:

package course.examples.Services.LoggingServiceWithMessenger;

import android.app.Service;
import android.content.Intent;
import android.os.Handler;
import android.os.IBinder;
import android.os.Message;
import android.os.Messenger;
import android.util.Log;

public class LoggingService extends Service {

 private final static String MESSAGE_KEY =
 "course.examples.Services.Logging.MESSAGE";
 private final static int LOG_OP = 1;

 private static final String TAG = "LoggingService";

 // Messenger Object that receives Messages from connected clients
 final Messenger mMessenger = new Messenger(new
 IncomingMessagesHandler());

 // Handler for incoming Messages
 static class IncomingMessagesHandler extends Handler {

 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case LOG_OP:
 Log.i(TAG, msg.getData().getString(MESSAGE_KEY));
 break;
 default:
 super.handleMessage(msg);
 }
 }
 }

 // Returns the Binder for the mMessenger, which allows
 // the client to send Messages through the Messenger
 @Override
 public IBinder onBind(Intent intent) {
 return mMessenger.getBinder();
 }
}

As you can see, this class extends the Service class. The code creates a Messenger
object passing in a new IncomingMessageHandler, defined here. The
handleMessage method receives messages that are sent to the handler. In this case, if
the message.what field is log_op, then this code writes the message to the log. Lastly,
this service defines an onBind method, which associates the Binder with the
mMessenger object and returns it. This value will eventually be passed back to clients,
that bind to this service.

Now letʼs look at the LoggingServiceWithMessengerClient application, starting with
the LoggingServiceClient class:

package course.examples.Services.LoggingServiceWithMessengerClient;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.Message;
import android.os.Messenger;
import android.os.RemoteException;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class LoggingServiceClient extends Activity {

 private final static String MESSAGE_KEY =
 "course.examples.Services.Logging.MESSAGE";
 private final static int LOG_OP = 1;
 private final static String TAG = "LoggingServiceClient";

 // Intent used for binding to LoggingService
 private final static Intent mLoggingServiceIntent = new
 Intent("course.examples.Services.
 LoggingServiceWithMessenger.LoggingService");
 private Messenger mMessengerToLoggingService;
 private boolean mIsBound;

 // Object implementing Service Connection callbacks

 private ServiceConnection mConnection = new ServiceConnection() {

 public void onServiceConnected(ComponentName className,
 IBinder service) {

 // Messenger object connected to the LoggingService
 mMessengerToLoggingService = new Messenger(service);
 mIsBound = true;
 }

 public void onServiceDisconnected(
 ComponentName className) {

 mMessengerToLoggingService = null;
 mIsBound = false;

 }
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 final Button buttonStart = (Button) findViewById
 (R.id.buttonStart);
 buttonStart.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 if (mIsBound) {
 // Send Message to the Logging Service
 logMessageToService();
 }
 }
 });
 }

 // Create a Message and sent it to the LoggingService
 // via the mMessenger Object

 private void logMessageToService() {

 // Create Message
 Message msg = Message.obtain(null, LOG_OP);
 Bundle bundle = new Bundle();
 bundle.putString(MESSAGE_KEY, "Log This Message");
 msg.setData(bundle);

 try {
 // Send Message to LoggingService using Messenger
 mMessengerToLoggingService.send(msg);
 } catch (RemoteException e) {
 Log.e(TAG, e.toString());
 }
 }

 // Bind to LoggingService
 @Override
 protected void onResume() {
 super.onResume();
 bindService(mLoggingServiceIntent, mConnection,
 Context.BIND_AUTO_CREATE);
 }

 // Unbind from the LoggingService
 @Override
 protected void onPause() {
 if (mIsBound) unbindService(mConnection);
 super.onPause();
 }
}

This code starts by creating an Intent that will be used for binding to the logging service.
Next, the code defines an object that implements the ServiceConnection callback
methods. In particular, in the onServiceConnected method the code creates a
Messenger object passing in the binder that was returned from the logging service
when this class binds to the logging service. This class will use this Messenger to
communicate with the login service.

Now scrolling down to onCreate, the code sets a Button listener that calls the
logMessageToService method when this button is clicked, which creates a new
Message object containing a message code, and the text to be written to the log. Then
it sends that message to the logging service using the messenger objectʼs send
method.

Continuing on, in onResume the code calls bindService, passing in the right intent, the
callback object, and a flag that tells Android to create the service if it doesn't already
exist.

In onPause, the code unbinds from the logging service.

Implementing bound services with a messenger as we just did is often the simplest way
to go as long as you can tolerate having only sequential access to the service.

When that doesn't work, though, then you will want to develop an AIDL interface to your
service. AIDL stands for the Android Interface Definition Language. When you use
this language to implement your service, you normally do the following things:

1. Define the service's remote interface using AIDL.
2. Implement the methods of that remote interface.
3. Implement the various service life cycle and callback methods.
4. Implement the client methods.

Let's talk about these steps. To define the service's remote interface, you'll need to
create an interface definition using the AIDL language in a .AIDL file, which defines
the methods through which components can interact with your service.

AIDL is similar in many ways to the syntax that you use in Java when you create
interfaces. For example, you can declare methods that need to be implemented if an
object wants to say that it conforms to that interface. One way in which it differs
however, is that in AIDL, you can't declare static fields. Another difference is that
non-primitive parameters to methods defined by the interface, require a directional
tag, which indicates how data is copied into and out of the methods.

The choices for the directional tag are:
• In - data is only transferred into the remote method.
• Out - data is only returned out of the remote method
• Inout - data is transferred both into and out of the remote method.

The parameters and return types of these remote methods are limited to the following
types: you can have Java primitive types such as int, float, and boolean, you can
have a string and/or a character sequence.

If you define other AIDL interfaces you can also use those as well, and you can use any
class that implements the Parcelable interface. You can also have lists, whose
elements are any of those types that I just mentioned. And these lists can be defined as
generic classes that take a type parameter. And finally, you can also use maps of
any of the types I've discussed. AIDL does not allow for generic map types.

Here's a simple example of an AIDL interface from an upcoming example. This interface
is called KeyGenerator and it defines a single method called getKey that takes no
parameters and returns a string:

interface KeyGenerator {
 String getKey();
}

Our next example applications are called ServiceWithIPCExampleClient and
ServiceWithIPCExampleService, where a client in one application binds to a service
hosted in another application. The client then retrieves a unique ID from the service. For
this example, we're going to assume that, for whatever reason, we want the service to
handle ID requests concurrently, so we've decided to use AIDL to define a remote
interface to the service.

Let's see these applications in action. Starting the ServiceWithIPCExampleClient
application:

As you can see the application presents a single button labeled Get New ID, when I
press this button, this application will bind to a service to retrieve a unique ID. This
application will then display that new ID. So here it goes. And there's my new ID.

Let's look at the source code for these applications. So here are the applications open in
the IDE. Let's start by looking at the ServiceWithIPCExampleService application. Now
I'll start by opening the keygenerator.aidl file.

package course.examples.Services.KeyCommon;

interface KeyGenerator {
 String getKey();
}

As we saw earlier this file defines the interface that clients can use to interact with this
service. That is they can call one method, getKey and then we'll get back a string.

Now let's look at the KeyGeneratorImpl class, implements the remote methods defined
in the AIDL KeyGenerator interface:

package course.examples.Services.KeyService;

import java.util.HashSet;
import java.util.Set;
import java.util.UUID;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import course.examples.Services.KeyCommon.KeyGenerator;

public class KeyGeneratorImpl extends Service {

 // Set of already assigned IDs
 // Note: These keys are not guaranteed to be unique if the
 // Service is killed and restarted.

 private final static Set<UUID> mIDs = new HashSet<UUID>();

 // Implement the Stub for this Object
 private final KeyGenerator.Stub mBinder =
 new KeyGenerator.Stub() {

 // Implement the remote method
 public String getKey() {

 UUID id;

 // Acquire lock to ensure exclusive access to mIDs
 // Then examine and modify mIDs

 synchronized (mIDs) {

 do {
 id = UUID.randomUUID();
 } while (mIDs.contains(id));

 mIDs.add(id);
 }
 return id.toString();
 }
 };

 // Return the Stub defined above
 @Override
 public IBinder onBind(Intent intent) {
 return mBinder;
 }
}

First, the class defines a set of IDs that it has already assigned. And know that this code
will not guarantee that all keys are unique if this service happens to be killed and then

restarted. To do that, you would need to store and restore the already assigned
keys. Now, in order to implement this interface, you need to implement the remote
methods inside an abstract inner class called Stub. That's just the name choice that the
AIDL compiler makes, and you have to respect that choice. Here the code makes a
new KeyGenerator.Stub instance, and then defines the getKey method in line.

The methods of this class need to be thread safe. So this class first synchronizes on
the mIDs object. And then it generates new IDs, until it finds one that hasn't already
been assigned. It then stores the ID, and returns a string version of it to the client.

Finally, down in the onBind method, the code returns the Stub class just defined above,
which will eventually be given to the client so it can interact with this service.

Let's look at the ServiceWithIPCExampleClient applicationʼs main activity:

package course.examples.Services.KeyClient;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.RemoteException;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
import course.examples.Services.KeyCommon.KeyGenerator;

public class KeyServiceUser extends Activity {

 protected static final String TAG = "KeyServiceUser";
 private KeyGenerator mKeyGeneratorService;
 private boolean mIsBound;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

 final TextView output = (TextView) findViewById
 (R.id.output);

 final Button goButton = (Button) findViewById
 (R.id.go_button);
 goButton.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 try {

 // Call KeyGenerator and get a new ID
 if (mIsBound)
 output.setText
 (mKeyGeneratorService.getKey());

 } catch (RemoteException e) {

 Log.e(TAG, e.toString());

 }
 }
 });
 }

 // Bind to KeyGenerator Service
 @Override
 protected void onResume() {
 super.onResume();

 if (!mIsBound) {

 Intent intent = new Intent(KeyGenerator.class.
 getName());
 bindService(intent, this.mConnection,
 Context.BIND_AUTO_CREATE);

 }
 }

 // Unbind from KeyGenerator Service
 @Override
 protected void onPause() {
 if (mIsBound) {
 unbindService(this.mConnection);
 }
 super.onPause();
 }

 private final ServiceConnection mConnection =
 new ServiceConnection() {

 public void onServiceConnected(ComponentName className,
 IBinder iservice) {
 mKeyGeneratorService =
 KeyGenerator.Stub.asInterface(iservice);
 mIsBound = true;

 }

 public void onServiceDisconnected(ComponentName className)

 {
 mKeyGeneratorService = null;
 mIsBound = false;
 }
 };
}

In onCreate, the code sets up a button that will make a call to the
KeyGeneratorService.getKey method, and then display the result in a text view.

In onResume, the code binds to the KeyGenerator service.

And in onPause, the code unbinds from the KeyGenerator service.

Scrolling down, the code creates the ServiceConnection object. In particular, in the
onServiceConnected method, the code takes the Stub that was returned from the
KeyGenerator service. And calls the KeyGenerator.Stub.asInterface method, which
returns an object that essentially represents the connection to the KeyGenerator
service.

So that brings us to the end of our discussion on services. And in fact, that brings us to
the end of the course. You did it. Congratulations!

It's been my pleasure, indeed, my honor to be your instructor. And I truly hope that
you're leaving this class with much, much more than what you brought to it. I know I am.
Now if you remember back to the start of the class, I asked you to write a note to
yourself, spelling out what you hoped to learn from this course. When you get a chance,
take a look at that note, and let us know how things turned out. We'd love to hear.

So that's all for now. Maybe our paths will cross again. I certainly hope so. Until then,
however, keep on learning. So long.

Week 8 - Content Providers
So far in this course we've talked in detail about only two of the four fundamental
components of Android, Activities and Broadcast receivers. In this lesson, we'll discuss
another: Content providers.

Content providers represent centralized repositories of structured data. They
encapsulate different data sets and they specify and enforce the permissions needed to
access that data. In many ways the ContentProvider class resembles the databases
we covered in the lesson on data storage, but content providers are specifically
designed to allow data sharing across between applications.

Applications that want to access a particular content provider do so by using a
companion class called ContentResolver, which presents a database-style interface
that lets applications read and write the data stored in a content provider. A
ContentResolver, therefore, supports methods such as query, insert, update, delete,
etc. ContentResolvers also provide additional services such as notifying registered
observers when data in the content provider changes.

When using a content resolver, your application will first get a reference to the current
contextʼs ContentResolver by calling the Context class's getContentResolver method.
Together, the content provider and the content resolver make it possible for code
running in one process to access data managed in another process.

Browser – bookmarks, history
Call log- telephone usage
Contacts – contact data
Media – media database
UserDictionary – database for
predictive spelling
Many more

To give some examples, Android comes with a number of standard content providers.
For instance, there's a content provider that stores browser information such as your
bookmarks and your browsing history. There's one for keeping track of the telephone
calls that you make. There's one managing contact information, another for keeping
track of your pictures, songs and videos, and another for keeping track of the words you
type into various applications so your device can improve predictive typing over time.

Data represented logically as
database tables

 _ID! artist!
13! Lady Gaga!

44! Frank Sinatra!

45! Elvis Presley!

53! Barbara Streisand!

Logically, the data managed by a content provider is represented as a database table.
For example, a content provider for managing a list of artists might have data elements
or columns for each record such as an ID field, and an artist name field. Applications
identify the data they want and the appropriate content provider through a URI.

Let's look at that format. Content URIs start with the string “content://”, which is the
URI's scheme and indicates that the URI refers to data that is managed by a content
provider. The URI also specifies it's authority by naming the specific content provider
carrying the desired data. The URI can also specify a path, containing segments that
indicate the specific data set containing the desired data. Finally URI can have an ID
that identifies a specific record within the desired data set.

content://authority/path/id

content – scheme indicating data that
is managed by a content provider
authority – id for the content
provider
path – 0 or more segments indicating
the type of data to be accessed
id – a specific record being requested

For example, an application that wants to access the contacts content provider might
use the following URI:

ContactsContract.Contacts.CONTENT_URI =
“content://com.android.contacts/contacts/”

This URI specifies a content scheme. It specifies com.android.contacts as it's
authority. Its path has the single string “contacts”, which basically corresponds to a
logical table within the content provider's database. And in this case, there's no ID field,
so that URI is interpreted as referring to the entire table, not to a single record within the
table.

An application can use this URI with a ContentResolver method, such as the query
method, to retrieve some or all of the contact records managed by the content
provider. As you can see in the next slide, the query method takes several parameters,
including a URI, something like what we just saw, an array of strings which specifies the
specific columns within the database that should be retrieved from the ContentProvider,
and several more strings that are used to perform the SQL query to be processed by the
ContentProvider. These strings can be used to retrieve particular subsets of the data,
and to specify an ordering criteria for the results.

Returns a Cursor for iterating over
the set of results

Cursor query (
 Uri uri, // ContentProvider Uri
 String[] projection // Columns to retrieve
 String selection // SQL selection pattern
 String[] selectionArgs // SQL pattern args
 String sortOrder // Sort order
)

An application example that uses this method, ContentProviderWithCursorAdapter,
extracts contact information from the contacts ContentProvider and displays each
contact's name and photo.

Let's see that application in action (above). As you can see it presents the names and
photos of some of my contacts.

Let's look at the source code for this applicationʼs main activity:

package
course.examples.ContentProviders.ContactsListWithAdapter;
import android.app.ListActivity;
import android.content.ContentResolver;
import android.database.Cursor;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;

public class ContactsListExample extends ListActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Contact data
 String columnsToExtract[] = new String[]
 { Contacts._ID, Contacts.DISPLAY_NAME,
 Contacts.PHOTO_THUMBNAIL_URI };

 // Get the ContentResolver
 ContentResolver contentResolver =
 getContentResolver();

 // filter contacts with empty names
 String whereClause = "((" + Contacts.DISPLAY_NAME +
 " NOTNULL) AND ("+ Contacts.DISPLAY_NAME +
 " != '') AND (" + Contacts.STARRED + "== 1))";

 // sort by increasing ID
 String sortOrder = Contacts._ID + " ASC";

 // query contacts ContentProvider
 Cursor cursor = contentResolver.query
 (Contacts.CONTENT_URI, columnsToExtract,
 whereClause, null, sortOrder);

 // pass cursor to custom list adapter
 setListAdapter(new ContactInfoListAdapter(this,
 R.layout.list_item, cursor, 0));
 }
}

In onCreate the code first defines the columns that it would request from the contact
ContentProvider. There are, of course, many different pieces of data associated with
each contact, but in this application we are interested in only the contactʼs name and
thumbnail photo.

Next, the code gets a reference to to context's ContentResolver. Then the code
defines a string for filtering out contacts with missing, empty, or unstarred names. Next,
the code creates a string defining an ascending sorting order for the records based on
the _ID fields.

Then the code issues a call to the query method, where the parameters include the
URI, which is defined by the contact class called Contacts, the columns to extract, the
where clause to filter out specific contacts, and the string defining the sort order.
This method returns a cursor, which will allow the application to iterate over the results
of this query.

Finally, the code creates and sets a new adapter which will be used by the listView to
display the contact info. The adapter is a ContactInfoListAdapter, which is defined by
this application.

Let's open that class now:

package
 course.examples.ContentProviders.ContactsListWithAdapter;

import java.io.FileNotFoundException;
import java.io.InputStream;

import android.content.Context;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;
import android.provider.ContactsContract.Contacts;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.ResourceCursorAdapter;
import android.widget.TextView;

public class ContactInfoListAdapter extends
 ResourceCursorAdapter {

 private Bitmap mNoPictureBitmap;

 private String TAG = "ContactInfoListAdapter";

 public ContactInfoListAdapter(Context context, int layout,
 Cursor c, int flags) {
 super(context, layout, c, flags);

 // default thumbnail photo
 mNoPictureBitmap = BitmapFactory.decodeResource
 (context.getResources(),
 R.drawable.ic_contact_picture);
 }

 // Create and return a new contact data view
 @Override
 public View newView(Context context, Cursor cursor,
 ViewGroup parent) {

 LayoutInflater inflater = (LayoutInflater)
 context.getSystemServiceContext.
 LAYOUT_INFLATER_SERVICE);
 return inflater.inflate(R.layout.list_item, parent,
 false);

 }

 // Update and return a contact data view
 @Override
 public void bindView(View view, Context context,
 Cursor cursor) {

 TextView textView = (TextView) view.findViewById
 (R.id.name);
 textView.setText(cursor.getString(cursor
 .getColumnIndex(Contacts.DISPLAY_NAME)));

 // default thumbnail photo
 ImageView imageView = (ImageView) view.findViewById
 (R.id.photo);
 Bitmap photoBitmap = mNoPictureBitmap;

 // Get actual thumbnail photo if it exists
 String photoContentUri = cursor.getString(cursor
 .getColumnIndex(Contacts.PHOTO_THUMBNAIL_URI));

 if (null != photoContentUri) {
 InputStream input = null;

 try {

 // Read thumbnail data from input stream
 input = context.getContentResolver()
 .openInputStream
 (Uri.parse(photoContentUri));

 if (input != null) {
 photoBitmap =
 BitmapFactory.decodeStream(input);
 }

 } catch (FileNotFoundException e) {
 Log.i(TAG, "FileNotFoundException");
 }
 }

 // Set thumbnail image
 imageView.setImageBitmap(photoBitmap);
 }
}

In this class's constructor, the code finds and stores a default image for contacts that
have no thumbnail photo. When the ListView needs views to display, it will first call the
newView method to get a brand new view, and then it will call the bindView method to
add data to that view.

Let's look closely these two methods. First, the newView method gets a reference to
the LayoutInflater service and calls the inflate method to create the new view based
on an XLM resource.

Down in the bindView method the code fills in that view. First, it displays the contact's
name within a TextView. Then it stores a reference to an ImageView within this view,
and it stores the default photo in the photoBitmap variable. Next the code checks
whether the is an actual photo stored for this contact. If so, it gets the URI associated
with that photo and opens an input stream to read the photo data into memory. Next, it
turns that data into a bitmap which it stores in the photoBitmap variable. And finally, the
code sets the photoBitmap as the image bitmap for the image view object we saw
earlier.

When an application queries a ContentProvider, that operation can take a while to
complete and we generally try to avoid doing intensive operations on the main thread to
avoid slowing an applicationʼs responsiveness. To prevent this when we use
ContentProviders, Android provides the CursorLoader class, which uses an
AsyncTask so that queries will be performed on a background thread instead of the
main thread.

To use a CursorLoader, you first need to create an object that implements the
LoaderManager's LoaderCallback interface. At run time, you must create and
initialize the CursorLoader with the help of that object that implements the loader
callbacks. To do this, the application will call the LoaderManager's initLoader method
to create and initialize a loader. That method takes several parameters, including an ID,
arguments, and the object that implements the LoaderCallbacks.

Loader<D> initLoader(int id, Bundle args, LoaderCallbacks<D>
callback)

After initLoader is called, several callbacks will occur. The first callback will be to the
onCreateLoader method.

Loader<D> onCreateLoader(int id, Bundle args)

In this method, we'll create and return a new loader for the specified ID. When that
loader finishes loading its data, Android calls the next callback method, onLoadFinished.

void onLoadFinished(Loader<D> loader, D data)

This method receives the newly created loader and a cursor containing the relevant
data.

When a previously created loader is reset, the onLoaderReset method is called.

void onLoaderReset (Loader<D> loader)

In this method, applications will typically remove any references they have to the
previous loader's data.

Our next example application is called ContentProviderWithCursorLoader. This
application produces the same result as our previous example. It extracts contact
information from the Android Contacts ContentProvider and it then displays each
contact's name and photo if the photo is available. However, this application performs
the ContentProvider Query in a background thread using the CursorLoader.

Let's see that application in action. As expected we see the same data as with the
previous application.

Let's take a look at the source code for this applicationʼs main activity.

package course.examples.ContentProviders.ContactsList;

import android.app.ListActivity;
import android.app.LoaderManager;
import android.content.CursorLoader;
import android.content.Loader;
import android.database.Cursor;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;

public class ContactsListExample extends ListActivity implements
 LoaderManager.LoaderCallbacks<Cursor> {

 private ContactInfoListAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create and set empty adapter
 mAdapter = new ContactInfoListAdapter(this,
 R.layout.list_item, null, 0);
 setListAdapter(mAdapter);

 // Initialize the loader
 getLoaderManager().initLoader(0, null, this);

 }

 // Contacts data items to extract
 static final String[] CONTACTS_ROWS = new String[]{
 Contacts._ID,
 Contacts.DISPLAY_NAME,
 Contacts.PHOTO_THUMBNAIL_URI };

 // Called when a new Loader should be created
 // Returns a new CursorLoader

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {

 // String used to filter contacts with empty or
 // missing names or are unstarred
 String select = "((" + Contacts.DISPLAY_NAME +
 " NOTNULL) AND ("+ Contacts.DISPLAY_NAME +
 " != '') AND (" + Contacts.STARRED + "== 1))";

 // String used for defining the sort order
 String sortOrder = Contacts._ID + " ASC";

 return new CursorLoader(this, Contacts.CONTENT_URI,
 CONTACTS_ROWS, select, null, sortOrder);
 }

 // Called when the Loader has finished loading its data
 @Override
 public void onLoadFinished(Loader<Cursor> loader,
 Cursor data) {

 // Swap the new cursor into the List adapter
 mAdapter.swapCursor(data);
 }

 // Called when the last Cursor provided to onLoadFinished()

 // is about to be closed

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {

 // set List adapter's cursor to null
 mAdapter.swapCursor(null);
 }
}

In onCreate, this application creates and sets an empty adapter, because there's no
data to show at this point. Then the code gets loaderManager and calls the initLoader
method on it, passing in the id zero, null for the arguments, and the reference “this” as
the object to call back as the loader progresses.

As before, the first callback method to be called will be the onCreateLoader method
that sets up the same filters that we saw before: we don't want contacts with empty or
missing names and we don't want contacts that are unstarred. We do want this data to
be sorted in a ascending order by ID. The code creates and returns a new
CursorLoader, passing in the information that we just set up.

The query that provides the data for this loader will be performed on a background
thread. And when that query is finished, the onLoadFinish method will be called. This
method takes the Cursor that is passed in and swaps it into the ListAdapter used by
this application.

Finally, when the cursor is about to be closed, the onLoaderReset method is called. In
this case, that method simply swaps in a null cursor to the list view's list adapter.

In addition to the query method, some common content resolver methods include the
delete, insert and update methods. The delete method takes three parameters, a URI
specifying the data to be deleted, a string specifying a pattern for selecting which rows
to delete, and another array of strings, providing arguments for that selection pattern.
This method returns the number of rows that were deleted.

int delete(Uri url, String where, String[] selectArgs)

The insert method takes a URI indicating the data set into which you want to insert a
new row. It also takes an object of the content values type, which holds the fields for
that new row. And this method returns the URI of the newly inserted row:

Uri insert (Uri uri, ContentValues values)

The update method also takes a URI and a content values object, just like Insert did.
But like the delete method, it also takes a string selection pattern and an array of

selection string arguments for indicating which specific rows to update. And this method
returns the number of rows that were updated:

int update(Uri uri, ContentValues values, String where, String[]
selectionArgs)

Our next example application is called ContentProviderInsertContacts. This
application reads several contacts from the Android contacts content provider, inserts
several new contacts into the content provider and displays the old and the new
contacts. When the application exits, it deletes all these new contacts.

Let's run this application:

Initially, this application displays a single button labeled Insert Contacts. I'll hit the Home
button now and start the People application. Here you can see some contacts that I
have on this device. Iʼll quit this application and restart our sample application. Again
you can see the Insert Contacts button. When I hit this button, some new contacts will
be inserted into the contacts content provider. So, here it goes.

Here you can see that I've inserted four new contacts into the contacts content provider.
Now just to be sure let me hit the home button again and restart the people application.
Now as you can see, the application does indeed Show those new contacts that we

programmatically inserted into the contacts content provider. So that means that other
applications can see, display, and even modify these new contacts.

Let's look at the source code for this applicationʼs main activity.

package course.examples.ContentProviders.ContactsListInsertContacts;

import java.util.ArrayList;
import java.util.List;

import android.accounts.Account;
import android.accounts.AccountManager;
import android.app.ListActivity;
import android.app.LoaderManager;
import android.content.ContentProviderOperation;
import android.content.CursorLoader;
import android.content.Loader;
import android.content.OperationApplicationException;
import android.database.Cursor;
import android.os.Bundle;
import android.os.RemoteException;
import android.provider.ContactsContract;
import
 android.provider.ContactsContract.CommonDataKinds.StructuredName;
import android.provider.ContactsContract.Contacts;
import android.provider.ContactsContract.Data;
import android.provider.ContactsContract.RawContacts;
import android.util.Log;
import android.widget.SimpleCursorAdapter;
import course.examples.ContentProviders.ContactsListWithInsDel.R;

public class DisplayActivity extends ListActivity implements
 LoaderManager.LoaderCallbacks<Cursor> {

 public final static String[] mNames = new String[] {
 "Android Painter",
 "Steve Ballmer",
 "Steve Jobs",
 "Larry Page" };

 private static final String columnsToExtract[] = new String[] {
 Contacts._ID, Contacts.DISPLAY_NAME, Contacts.STARRED };
 private static final String columnsToDisplay[] = new String[]
 { Contacts.DISPLAY_NAME };
 private static final int[] resourceIds = new int[] { R.id.name };
 private static final String TAG = "ContactsListDisplayActivity";

 private Account[] mAccountList;
 private String mType;
 private String mName;
 private SimpleCursorAdapter mAdapter;

 @Override

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Get Account information
 mAccountList = AccountManager.get(this).getAccountsByType
 ("com.google");
 mType = mAccountList[0].type;
 mName = mAccountList[0].name;

 // Insert new contacts
 insertAllNewContacts();

 // Create and set empty list adapter
 mAdapter = new SimpleCursorAdapter(this,
 R.layout.list_layout, null,
 columnsToDisplay, resourceIds, 0);
 setListAdapter(mAdapter);

 // Initialize a CursorLoader
 getLoaderManager().initLoader(0, null, this);
 }

 // Insert all new contacts into Contacts ContentProvider
 private void insertAllNewContacts() {

 // Set up a batch operation on Contacts ContentProvider
 ArrayList<ContentProviderOperation> batchOperation =
 new ArrayList<ContentProviderOperation>();

 for (String name : mNames) {
 addRecordToBatchInsertOperation(name, batchOperation);
 }

 try {

 // Apply all batched operations
 getContentResolver().applyBatch
 (ContactsContract.AUTHORITY, batchOperation);

 } catch (RemoteException e) {
 Log.i(TAG, "RemoteException");
 } catch (OperationApplicationException e) {
 Log.i(TAG, "RemoteException");
 }

 }

 // Insert named contact into Contacts ContentProvider
 private void addRecordToBatchInsertOperation(String name,
 List<ContentProviderOperation> ops) {

 int position = ops.size();

 // First part of operation

 ops.add(ContentProviderOperation.newInsert
 (RawContacts.CONTENT_URI)
 .withValue(RawContacts.ACCOUNT_TYPE, mType)
 .withValue(RawContacts.ACCOUNT_NAME, mName)
 .withValue(Contacts.STARRED, 1).build());

 // Second part of operation
 ops.add(ContentProviderOperation.newInsert
 (Data.CONTENT_URI)
 .withValueBackReference(Data.RAW_CONTACT_ID, position)
 .withValue(Data.MIMETYPE,
 StructuredName.CONTENT_ITEM_TYPE)
 .withValue(StructuredName.DISPLAY_NAME,
 name).build());
 }

 // Remove all newly-added contacts when activity is destroyed
 @Override
 protected void onDestroy() {
 deleteAllNewContacts();
 super.onDestroy();
 }

 private void deleteAllNewContacts() {
 for (String name : mNames) {
 deleteContact(name);
 }
 }

 private void deleteContact(String name) {
 getContentResolver().delete
 (ContactsContract.RawContacts.CONTENT_URI,
 ContactsContract.Contacts.DISPLAY_NAME + "=?",
 new String[] { name });
 }

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 String select = "((" + Contacts.DISPLAY_NAME +
 " NOTNULL) AND (" + Contacts.DISPLAY_NAME +
 " != '') AND (" + Contacts.STARRED + "== 1))";
 return new CursorLoader(this, Contacts.CONTENT_URI,
 columnsToExtract, select, null,
 Contacts._ID + " ASC");
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 mAdapter.swapCursor(data);
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }
}

In OnCreate, the code first gets information about the accounts registered on this
device. Next the code calls the insertAllNewContacts method, which inserts the four
new contacts. After this, the code sets up and uses a CursorLoader to get and display
the appropriate contact information.

Let's look at how this application inserts the new contacts. The insertAllNewContacts
method sets up a batch operation in which it inserts all of the new contacts at once. It
starts by creating an ArrayList of content provider operations. And it then calls the
addRecordToBatchInsertOperation method for each of the new contacts. Now, in this
method, the code first adds some information to the raw contacts table, such as the
account's name, type and the fact that this contact should be starred, which means
it's treated as a favorite contact. Next, the method adds the new contact's name to
the data table. And after all the new contacts have been added to the batch operation,
the insert all new contacts method then called the applied batch method to commit the
entire batch operation.

Implementing ContentProviders

If you want to create your own content provider, then you'll need to do the following
things:

1. Implement a storage system for the data. You'll often do this by creating an SQL Lite
database, but other approaches will work just as well.

2. Define what is called a Contract Class that defines constants and other information
that other applications will need in order to use your Content Provider.

3. Define a ContentProvider subclass implementing methods such as delete and
insert.

4. Declare and configure your Content Provider in the AndroidManifest.xml file for its
application.

The next example application is called ContentProviderCustom. This application
defines a content provider for simple ID and string pairs.

Let's first take a look at the source code for this applicationʼs content provider itself,
which is in the StringsContentProvider.java file.

package course.examples.ContentProviders.StringContentProvider;

import android.content.ContentProvider;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.MatrixCursor;
import android.net.Uri;
import android.util.SparseArray;

// Note: Currently, this data does not persist across device reboot
public class StringsContentProvider extends ContentProvider {

 // Data storage
 private static final SparseArray<DataRecord> db =
 new SparseArray<DataRecord>();

 @SuppressWarnings("unused")
 private static final String TAG = "StringsContentProvider";

 // Delete some or all data items
 @Override
 public synchronized int delete(Uri uri, String selection,
 String[] selectionArgs) {

 int numRecordsRemoved = 0;

 // If last segment is the table name, delete all data items
 if (isTableUri(uri)) {

 numRecordsRemoved = db.size();
 db.clear();

 // If last segment is the digit, delete the data item with
 // that ID
 } else if (isItemUri(uri)) {
 Integer requestId = Integer.parseInt
 (uri.getLastPathSegment());
 if (null != db.get(requestId)) {
 db.remove(requestId);
 numRecordsRemoved++;
 }
 }

 //return number of items deleted
 return numRecordsRemoved;
 }

 // Return MIME type for given uri
 @Override
 public synchronized String getType(Uri uri) {
 String contentType = DataContract.CONTENT_ITEM_TYPE;
 if (isTableUri(uri)) {
 contentType = DataContract.CONTENT_DIR_TYPE;
 }
 return contentType;
 }

 // Insert specified value into ContentProvider
 @Override
 public synchronized Uri insert(Uri uri, ContentValues value) {

 if (value.containsKey(DataContract.DATA)) {

 DataRecord dataRecord = new DataRecord
 (value.getAsString(DataContract.DATA));
 db.put(dataRecord.getID(), dataRecord);

 // return Uri associated with newly-added data item
 return Uri.withAppendedPath(DataContract.CONTENT_URI,
 String.valueOf(dataRecord.getID()));
 }
 return null;
 }

 // Return all or some rows from ContentProvider based on
 // specified Uri.
 // All other parameters are ignored

 @Override
 public synchronized Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs,
 String sortOrder) {

 // Create simple cursor
 MatrixCursor cursor = new MatrixCursor
 (DataContract.ALL_COLUMNS);

 if (isTableUri(uri)) {

 // Add all rows to cursor
 for (int idx = 0; idx < db.size(); idx++) {

 DataRecord dataRecord = db.get(db.keyAt(idx));
 cursor.addRow(new Object[] { dataRecord.getID(),
 dataRecord.getData() });

 }
 } else if (isItemUri(uri)){

 // Add single row to cursor
 Integer requestId = Integer.parseInt
 (uri.getLastPathSegment());

 if (null != db.get(requestId)) {
 DataRecord dr = db.get(requestId);
 cursor.addRow(new Object[] { dr.getID(),
 dr.getData() });
 }
 }
 return cursor;
 }

 // Ignore request
 @Override
 public synchronized int update(Uri uri, ContentValues values,

 String selection, String[] selectionArgs) {
 return 0;
 }

 // Initialize ContentProvider
 // Nothing to do in this case
 @Override
 public boolean onCreate() {
 return true;
 }

 // Does last segment of the Uri match a string of digits?
 private boolean isItemUri(Uri uri) {
 return uri.getLastPathSegment().matches("\\d+");
 }

 // Is the last segment of the Uri the name of the data table?
 private boolean isTableUri(Uri uri) {
 return uri.getLastPathSegment().equals
 (DataContract.DATA_TABLE);
 }
}

Here you can see that this class extends the ContentProvider class. First you can see
that the actual data is stored in a simple data structure of the type SparseArray. So
your content provider doesn't always have to be implemented using a database.

Next the code defines a number of methods. First, there's the delete method, which
removes either a single record from the database or removes all of them. Also, this
method doesn't process any of the SQL constructs. This method tests to see
whether the URI that was passed refers to the whole table or to a single record within
the table. If it refers to the whole table, then the code clears the entire sparse array. And
if it refers to only a single record, then the code removes that single record from the
sparse array. The code returns the number of records that were deleted.

Next, the code implements the getType method, which uses the DataContract class to
return the mime type of the data associated with a given URI.

Next, the code implements the insert method, which extracts the data for a given
record, puts it in the data record object and then stores the data record object in the
sparse array. It returns a new URI that can be used to retrieve this new record.

Next the code implements the query method, which begins by creating a MatrixCursor
object, which is just a simple cursor that will return all of the data associated with each
record. If the URI refers to all of the records, the code will insert every record into this
cursor. If instead the URI refers to a single record then the code will add only that record
to the cursor. The code returns the cursor it just created.

The last method is onCreate and normally you would initialize the data storage system
here but for this simple example no initialization is necessary - the code simply returns
true to indicate that the initialization completed properly.

Before we move on, let's open up the AndroidManifest.xml file for this application.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
package="course.examples.ContentProviders.StringContentProvider"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk
 android:minSdkVersion="13"
 android:targetSdkVersion="19" />

 <application
 android:allowBackup="false"
 android:icon="@drawable/icon"
 android:label="@string/app_name" >
 <provider
 android:name="course.examples.ContentProviders.
 StringContentProvider.StringsContentProvider"
 android:authorities="course.examples.
 ContentProviders.StringContentProvider"
 android:exported="true" >
 </provider>
 </application>
</manifest>

Here you can see that we've added a provider tag. And within this tag, we've specified
the name of the class that implements this content provider. We've added the authority
portion of the URI that will have to be used to access this content provider, and we've
set the exported attribute to true to allow other applications to access this content
provider.

Our last example application is called ContentProviderCustomUser. This application
is separate from the content provider custom application that we just looked at.
However, it reads data from that content provider and displays the records in a ListView.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Let's look at this application in action:

And as you see, the application displays two data records.

Let's look at the source code for this application to see where that data came from.
Here's the ContentProviderCustomUser applicationʼs main activity.

package
course.examples.ContentProviders.StringContentProviderUser;

import android.app.ListActivity;
import android.content.ContentResolver;
import android.content.ContentValues;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.widget.SimpleCursorAdapter;
import
 course.examples.ContentProviders.StringContentProvider.
 DataContract;

public class CustomContactProviderDemo extends ListActivity {

 @SuppressWarnings("unused")
 private static final String TAG =
 "CustomContactProviderDemo";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ContentResolver contentResolver =
 getContentResolver();
 ContentValues values = new ContentValues();

 // Insert first record
 values.put(DataContract.DATA, "Record1");
 Uri firstRecordUri = contentResolver.insert
 (DataContract.CONTENT_URI, values);
 values.clear();

 // Insert second record
 values.put(DataContract.DATA, "Record2");
 contentResolver.insert(DataContract.CONTENT_URI,
 values);
 values.clear();

 // Insert third record
 values.put(DataContract.DATA, "Record3");
 contentResolver.insert(DataContract.CONTENT_URI,
 values);

 // Delete first record
 contentResolver.delete(firstRecordUri, null, null);

 // Create and set cursor and list adapter
 Cursor c = contentResolver.query
 (DataContract.CONTENT_URI, null, null, null,
 null);

 setListAdapter(new SimpleCursorAdapter(this,
 R.layout.list_layout, c,
 DataContract.ALL_COLUMNS, new int[]
 { R.id.idString, R.id.data }, 0));
 }
}

The onCreate method begins by getting a reference to the content resolver for this
context. Next, it creates a ContentValues object. After that, the code adds a value for
record one. And then calls the insert method to insert that record into the content
provider. The code then does the same thing for a second, and a third record. And then,
it deletes the first record that it had previously inserted, by calling the delete method.
After all of this, the code then queries the content provider to extract all of the records
that are currently stored in the content provider and then it displays those records in a
ListView.

So that's all for our lesson on ContentProviders. Please join me next time for a
discussion of the last fundamental component of Android, the Service class.

