
South Africa 2013

Lecture 4: InheritanceLecture 4: Inheritance

http://aiti.mit.edu

What is Inheritance?

• In the real world:

• We have general terms for objects in the

real world, example “Vehicle”

• Vehicles have wheels, they move, you can ride

them, etc.

• There are many specific types of “Vehicles”

• Cars, bicycle, trucks, busses etc.

• They all share (inherit) attributes of a vehicle

• But each is more specific:

• Cars have 4 wheels, carry 5 people

• Bicycles have 2 wheels, carry 1 person

2

What is Inheritance?
In software:

• Objects that are derived from other object

"resemble" their parents by inheriting both

state (fields) and behaviour (methods).

• Parents are more general than children

• Children refine parents class specification for

different uses

3

Dog Class
public class Dog {

private int numOfLegs;

public Dog(int legs){

numOfLegs = 4;

}

public int getNumLegs(){

return numOfLegs;

}

public String bark(){

return “Woof”;

}

}

Dog

int numOfLegs

int getNumLegs()

void bark()

4

Duck Class
public class Duck {

private int numOfLegs;

public Cat(int legs){

numOfLegs = 2;

}

public int getNumLegs(){

return numOfLegs;

}

public String quack(){

return “quack”;

}

}

Duck

int numOfLegs

int getNumLegs()

void quack()

5

Problem: Code Duplication

• Duck and Dog have the numOfLegs field

and the getNumLegs method in common

• Classes often have a lot of state and

behaviour in common

• Result: lots of duplicate code!

6

Solution: Inheritance
• Inheritance allows you to write new classes

that inherit from existing classes

• The existing class whose properties are

inherited is called the "parent" or superclass

• The new class that inherits from the super

class is called the "child" or subclass

• Result: Lots of code reuse!

7

Dog

int numOfLegs

int getNumLegs()

void bark()

Duck

int numOfLegs

int getNumLegs()

void quack()

Dog

void bark()

Duck

void quack()

Animal

int numOfLegs

int getNumLegs()

using
inheritance

superclass

subclass

subclass

8

Animal Superclass
public class Animal {

public int numOfLegs;

public Animal(int numOfLegs) {

this.numOfLegs = numOfLegs;

}

public int getNumLegs() {

return this.numOfLegs;

}

}

9

Inheritance Rules
• Use the extends keyword to indicate that one

class inherits from another

• The subclass inherits public (and protected)

fields and methods of the superclass

• Use the super keyword in the subclass

constructor to call the superclass constructor

10

Dog Class

public class Dog extends Animal {

public Dog() {

super(4);

}

public String bark() {

return “Woof”;

}

}

11

Duck Class
public class Duck extends Animal {

public Duck() {

super(2);

}

public String quack(){

return “Quack”;

}

}

12

Is-A Relationship

• Inheritance defines an “is-a” relationship

• Dog is an Animal

• Duck is an Animal

• One way relationship

• Animal is not a Dog! (Remember this when coding!)

• The derived class inherits access to methods

and fields from the parent class

• Use inheritance when you want to reuse code

13

Aside: Has-A Relationship

• When one class has a field of another

class (or primitive type)

– Animal has an int

• Do not confuse with inheritance!

14

Inheritance Review 1

What is the output of the following?

Dog d = new Dog();

Duck u = new Duck();

System.out.println(“A dog has “ +

d.getNumLegs() + d.bark());

System.out.println(“A duck has “ +

u.getNumLegs() + u.quack());

(Dog and Duck inherit the getNumLegs() method from the Animal super class, but
get bark and quack from their own class)

15

Which Lines Don't Compile?
public static void main(String[] args) {

Animal a1 = new Animal(4);

a1.getNumLegs();

a1.bark();

a1.quack();

Dog a2 = new Dog();

a2.getNumLegs();

a2.bark();

a2.quack();

Duck du = new Duck();

du.getNumLegs();

du.bark();

du.quack();

}

// Animal does not have bark

// Animal does not have quack

// Dog does not have a quack

// Duck does not have bark

16

Subclass Constructor
• The first thing a subclass constructor must do

is call a constructor in the superclass.

• If the subclass constructor does not do this,

then the default superclass constructor (with no

arguments) will be called implicitly.

17

Implicit Super Constructor Call

If I have this Food class:

public class Food {

private boolean raw;

public Food() {

raw = true;

}

}

then this Beef subclass:

public class Beef extends Food {

private double weight;

public Beef(double w) {

weight = w

}

}

is equivalent to:

public class Beef extends Food {

private double weight;

public Beef(double w) {

super();

weight = w

}

}

18

Inheritance Review 2
public class A {

public A() { System.out.println("I'm A"); }

}

public class B extends A {

public B() { System.out.println("I'm B"); }

}

public class C extends B {

public C() { System.out.println("I'm C"); }

}

What does this print out?

C x = new C();

19

• Subclasses can override methods in their superclass

• What is the output of the following?

ThermUS thermometer = new ThermUS(100);

System.out.println(thermometer.getTemp());

Overriding Methods

class ThermUS extends Therm {

public ThermUS(double c) {

super(c);

}

// degrees in Fahrenheit

public double getTemp() {

return celsius * 1.8 + 32;

}

}

class Therm {

protected double celsius;

public Therm(double c) {

celsius = c;

}

public double getTemp() {

return celcius;

}

}

212

20

Calling Superclass Methods
When you override a method, you can call

the superclass's copy of the method by
using the syntax super.method()

class Therm {

private double celsius;

public Therm(double c) {

celcius = c;

}

public double getTemp() {

return celcius;

}

}

class ThermUS extends Therm {

public ThermUS(double c) {

super(c);

}

public double getTemp() {

return super.getTemp()

* 1.8 + 32;

}

}

21

Remember Casting?
• "Casting" means "promising" the compiler

that the object will be of a particular type.

– So the compiler should go ahead and convert

• You can cast a variable to the type of the
object that it references to use that object's
methods.

Animal a2 = new Dog();

a2.bark(); //Animal does not have a bark method

-> ((Dog)a2).bark();

• The casting will fail if the variable doesn’t
reference an object of that type.

22

Which Castings Will Fail?

public static void main(String[] args) {

Animal a1 = new Dog();

((Dog)a1).bark();

((Duck)a1).quack();

Animal a2 = new Duck();

((Duck)a2).quack();

((Dog)a2).bark();

//a1 changed to Dog

//a1 is not a Cat

//a2 changed to Duck

//Dog is not a Dog

23

Programming Example
A company has a list of Employees.

It asks you to provide a payroll sheet for all
employees.

– Different types of employees

• manager, engineer, software engineer.

• Manager straight Salary

• Engineer Hourly

– You have an old Employee class but need to add
very different data and methods for managers and
engineers.

24

class Employee {

// Fields

private String firstName, lastName;

// Constructor

public Employee(String fName, String lName) {

firstName= fName; lastName= lName;

}

// Method

public void printData() {

System.out.println(firstName + " " + lastName);

}

}

This is a simple super or base class.

Employee Class

25

Inheritance

26

Employee

String fname

String lname

void printData()

Manager

double salary

void printData()

double getPay()

Engineer

double wage

double hoursWorked

void printData()

double getPay()

Is-AIs-A

class Engineer extends Employee {

private double wage;

private double hoursWorked;

public Engineer(String fName, String lName,

double rate, double hours) {

super(fName, lName);

wage = rate;

hoursWorked = hours;

}

public double getPay() {

return wage * hoursWorked;

}

public void printData() {

super.printData(); // PRINT NAME

System.out.println("Weekly pay: $" +

getPay(); }

}

Engineer Subclass

27

Manager Subclass

class Manager extends Employee {

private double salary;

public Manager(String fName, String lName, double sal){

super(fName, lName);

salary = sal; }

public double getPay() {

return salary; }

public void printData() {

super.printData();

System.out.println("Monthly salary: $" + salary);}

}

28

More Inheritance

29

Manager

double salary

void printData()

double getPay()

Sales Manager

double bonus

void getBonus()

double printData()

Is-A

class SalesManager extends Manager {

private double bonus; // Bonus Possible as commission.

// A SalesManager gets a constant salary of $1250.0

public SalesManager(String fName, String lName, double b) {

super(fName, lName, 1250.0);

bonus = b; }

public double getBonus() {

return bonus; }

public void printData() {

super.printData(); //Print from both Super Classes

System.out.println("Bonus Pay: $" + getBonus(); }

}

SalesManager Class

30

SalesManager

31

SalesManager

private double bonus

public SalesManager(String, String, double)

public double getBonus()

public void printData()

Manager

public Manager(String, String, double)

public void printData()

public double getPay()

Employee

public Employee(String, String)

public void printData()

public class PayRoll {

public static void main(String[] args) {

Engineer fred = new Engineer("Fred", "Smith", 12.0, 8.0);

Manager ann = new Manager("Ann", "Brown", 1500.0);

SalesManager mary = new SalesManager("Mary", "Kate", 2000.0);

Employee[] employees = new Employee[3];

employees[0]= fred;

employees[1]= ann;

employees[2]= mary;

for (int i=0; i < 3; i++)

employees[i].printData();

}

}

Java knows the

object type and

chooses the

appropriate method

at run time

Main Method

32

Fred Smith

Weekly pay: $96.0

Ann Brown

Monthly salary: $1500.0

Mary Barrett

Monthly salary: $1250.0

Bonus: $2000.0

Note that we could not write:

employees[i].getPay();

because getPay() is not a method of the superclass Employee.

In contrast, printData() is a method of Employee, so Java can find the
appropriate version, starts from subclass (most inherited) and works the
way up for method

Output from main method

33

instanceof Operator

• How about if you want to test if an object is of a

specific class?

• Use the instanceof operator

– returns true if an object is of the class

– returns true if an object is a subclass of the class

• Form:

obj instanceof Class

34

instanceof Example

Employee emp = new Employee(“first”, “last”);

Engineer eng = new Engineer("Fred", "Smith",

12.0, 8.0);

Manager mana = new Manager("Ann", "Brown", 1500.0);

SalesManager salesm = new SalesManager("Mary", "Kate",
2000.0);

emp instanceof Employee

emp instanceof Engineer

mana instanceof Employee

eng instanceof Engineer

salesm instanceof Manager

35

true

false

true

true

true

instanceof Example

36

public class PayRoll {

public static void main(String[] args) {

Engineer fred = new Engineer("Fred", "Smith", 12.0, 8.0);

Manager ann = new Manager("Ann", "Brown", 1500.0);

SalesManager mary = new SalesManager("Mary", "Kate", 2000.0);

Employee[] employees = new Employee[3];

employees[0]= fred;

employees[1]= ann;

employees[2]= mary;

for (int i=0; i < 3; i++)

if (employees[i] instanceof SalesManager)

System.out.println(employees[i].getBonus());

}

}

Object Class

37

• All Java classes implicitly inherit from
java.lang.Object

• So every class you write will automatically
have methods in Object such as equals,
hashCode, and toString.

• We'll learn about the importance of some
of these methods in later lectures.

