
South Africa 2013

Lecture 3: Classes and Objects; EncapsulationLecture 3: Classes and Objects; Encapsulation
and References; Static Fields and Methods

http://aiti.mit.edu

South Africa 2013

Classes and ObjectsClasses and Objects

http://aiti.mit.eduAfrica Information Technology Initiative © 2009

What do we know so far?

• Primitives: int, float, double, boolean, char

• Variables: Stores values of one type.

• Arrays: Store many of the same type.

• Control Structures: If-then, For Loops.

• Methods: Block of code that we can pass

arguments to and run multiple times.

• Is this all we want?

Object-Oriented Programming

• Programming using objects

• An object represents an entity

– Real world object: String, car, watch, …

– Abstract object: list, network connection, …

• Objects have two parts:

– State: Properties of an object.

– Behavior: Things the object can do.

Objects

• Car Example:

– State: Color, engine size, automatic

– Behavior: Brake, accelerate, shift gear

• Person Example:

– State: Height, weight, gender, age

– Behavior: Eat, sleep, exercise, study

Why use objects?

• Modularity: Once we define an object, we

can reuse it for other applications.

• Abstraction: Programmers don’t need to

know exactly how the object works. Just

the interface.

• Encapsulation: Hide the internal

mechanisms to keep consistency.

Abstraction

• We abstract away details to deal with complex

problems.

– Necessary for forming relationships between complex

pieces of code.

– The art is knowing which details to hide away and

which to preserve.

– What is a forms of abstraction have we seen so far?

• Example:

– Different cars can use the same parts.

– You don’t need to know how an engine works in order

to drive a car.

Classes

A Bicycle Class

Two instances of the Bicycle Class

Our first Class: LightSwitch

class LightSwitch {

boolean isOn = true;

}

• What is the state of a LightSwitch?

• State stored in fields; here it’s “isOn”.

• Fields are accessed using:

– variableName.fieldName

– (We’ll discuss other types of fields later)

• What are the behaviors of a LightSwitch?

Our First Class: LightSwitch

class LightSwitch {

}

• class keyword tells Java you are creating a

class

• The class must reside in a file named

ClassName.java

– Ex: LightSwitch.java

• Currently, our class does nothing…

Adding State

class LightSwitch {

boolean isOn = true;

}

• What is the state of a LightSwitch?

• State stored in fields; here it’s “isOn”.

• Fields are accessed using:

– variableName.fieldName

– (We’ll discuss other types of fields later)

• What are the behaviors of a LightSwitch?

Adding Behavior

class LightSwitch {

boolean isOn = true;

void flip() {

this.isOn = !this.isOn;

}

}

• We define methods in a class to add behavior

– Methods change the state of the object and affect system state

• this.isOn accesses the isOn field.

• What behavior does LightSwitch have now?

this Keyword

• Reference to the current object

– The object whose method is being called

• Used to access fields:
class SimpleClass {

int x = 0; //Field of SimpleClass

void foo(int x) {

this.x = x;

}

}

12

Using Objects

public static void main(String[] args) {

LightSwitch s = new LightSwitch();

System.out.println(s.isOn);

s.flip();

System.out.println(s.isOn);

}

• The new keyword creates a new object.

• new must be followed by a constructor.

• We call methods like:
– variableName.methodName(arguments)

• What does this code output?

Constructors

• Constructors initialize the object after
memory is allocated.

– We can pass constructors data needed during
initialization

• Objects have a default constructor that
takes no arguments, like LightSwitch()

Constructors

• We can define our own constructors that
take any number of arguments.

– LightSwitch(boolean startState)

• Constructors have NO return type and
must be named the same as the class:

– ClassName(argument signature) { body }

Constructors
class LightSwitch {

boolean isOn;

void flip() {

this.isOn = !this.isOn;

}

LightSwitch(boolean startState) {

this.isOn = startState;

}

}

• The LightSwitch() constructor no longer works. How do we

instantiate an object?

Multiple Constructors

• We can have multiple constructors.

• Constructors can call each other.

LightSwitch() {

this(true);

}

LightSwitch(boolean startState){

this.isOn = startState;

}

Review

• What two properties do objects have?

• What is the difference between a class

and an object?

• What is a field?

• What does the this keyword mean?

• What does the new keyword do?

• What is a constructor?

BankAccount Example

public class BankAccount {

double balance;

String name;

BankAccount(String name,

double openBalance){

this.name = name;

this.balance = openBalance;

} // Continued next slide

…

BankAccount Example

…

double deposit(double amount) {

balance += amount;

return balance;

}

boolean withdraw(double amount) {

if (amount < balance) {

balance -= amount;

return true;

} else return false;

}

}// End BankAccount Class

South Africa 2013

Object Encapsulation and ReferencesObject Encapsulation and References

Data Field Encapsulation

• Sometimes we want variables to be

accessible only within the class itself

– Hide from other classes

• Prevents undesired/incorrect tampering

with variables by methods outside of the

class

– Maintain consistency of state

Without Encapsulation..

class BankAccount {

//Fields

double balance;

String name;

//constructor

BankAccount(String name, double openBalance){

this.name = name;

this.balance = openBalance;

}

}

In Another Class

class AnotherClass {

static void main(String[] args) {

//create bank account

BankAccount mikesAccount =

new BankAccount (“Mike”, 10000000);

//some tampering…

mikesAccount.name = “Zach”;

}

}

This is not good for poor Mike!

Visibility Modifiers

• public – makes methods and data fields

accessible by any other class

• private – makes methods and data

fields accessible only from within its own

class

• (neither) – similar to public but a bit more

restricted

Example, BankAccount

class BankAccount {

//data fields

private double balance;

private String name;

//constructor

BankAccount(String name, double openBalance){

this.name = name;

this.balance = openBalance;

}

}

Common Object Oriented Practices

• Accessors – get the value of a data field

– Sometimes called getters

• Mutators – set the value of a data field

– Sometimes called setters

BankAccount, add accessors

public class BankAccount {

–

–

–

//accessors

public double getBalance(){

return balance;

}

public String getName(){

return name;

}

BankAccount, add mutators

//mutators

public void deposit(double amount){

…

}

public void withdraw (double amount){

…

}
Notice there is no access to the name

data field! Now Zach can’t steal Mike’s

account.

class AnotherClass {

static void main(String[] args) {

//create bank account

BankAccount mikesAccount =

new BankAccount (“Mike”, 5);

//Illegal

mikesAccount.name = “Zach”;

//Illegal

mikesAccount.balance = 100000000;

}

}

Now we are safe!

private Methods

• Methods of a class that are declared

private can only be called within the class.

private void setName(String newName) {

…

}

11

class AnotherClass {

static void main(String[] args) {

//create bank account

BankAccount mikesAccount =

new BankAccount (“Mike”, 5);

//Illegal, private method of Bank Account

mikesAccount.setName(“Zach”);

}

}

Now we are safe!

Accessibility Intuition

• Accessibility modifiers are not used for

safety

– There are ways around them in Java!

• They are used for encapsulation!

– Hide unnecessary state/methods from user of

class

– Prevent access to state to maintain object

consistency

13

Consistency Example

class Family {

Person[] males;

Person[] females;

//want totalMembers = males + females

int totalMembers = 0;

…

public void addFemale(Person person)…

public void addMale(Person person)…

}

14

Inconsistent

class AnotherClass {

void method() {

Family myFam = new Family();

myFam.addMale(new Person(“Mike”));

myFam.addFemale(new Person(“Mary”));

myFam.totalMembers = 10;

//now myFam is inconsistent!

}

}

15

A Better Way!
class Family {

private Person[] males;

private Person[] females;

//want totalMembers = males + females

private int totalMembers = 0;

…

public void addFemale(Person person) {

females[…] = person;

totalMembers++;

}

}

16

Object References

• An object variable is really a reference to

the object.

– A pointer is a good way of thinking about it

• You must “dereference” the variable to

access method and fields

– Ex: person.getName(), course.number

References
• You can have 2 variables reference the

same object

Integer a = new Integer(5);

Integer b = a;

//a and b reference the same object

Primitive Argument Passing

• Remember that primitive arguments are

passed by value.

• If you change a primitive argument inside

of a method, the variable in the calling

method will remain unchanged.

Review:

Primitive Argument Passing
public static int meth(int a, int b) {

a = a * 2;

b = b * 3;

return a + b;

}

public static void main(String[] args) {

int x = 5;

int y = 10;

int z = 0;

z = meth(x, y);

//what is the value of x and y?

}

Object Argument Passing

• Object Arguments are pass by reference

– A copy is not made

• Any changes to the object in the method

are visible in the calling method

Object Argument Passing
void changeName(Person person) {

person.setName(“Mike”);

}

public static void main(String[] args) {

Person cory = new Person(“Cory”);

changeName(person);

//what is the value cory.getName()?

}

South Africa 2013

Static Fields and MethodsStatic Fields and Methods

What You Know So Far

• Each object has its own copy of methods

and fields:

class BankAccount {

private String name;

private double balance;

public void withdraw(double amount) …

}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

BankAccount zachAcc = new BankAccount(“Zach”, 20);

2

• Each object has its own copy of methods

and fields:

Instance Fields and Methods

3

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

Instance Fields and Methods

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

BankAccount zachAcc = new BankAccount(“Zach”, 20);

System.out.println(mikeAcc.getBalance()); //100

System.out.println(zachAcc.getBalance()); //20

zachAcc.withdraw(19);

System.out.println(mikeAcc.getBalance()); //100

System.out.println(zachAcc.getBalance()); //1

4

Shared Fields

5

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

BankAccount Class

double interestRate

• What if we wanted to make

a field shared among all

objects of a class?

Static Fields

• A given class will only have one copy of

each of its static fields

– This will be shared among all the objects.

• Each static field exists even if no objects

of the class have been created.

• Use the word static to declare a static

field.

Static Fields

• Only one instance of a static field data for

the entire class, not one per instance.

• "static" is a historic keyword from C/C++

Static Fields Example

class BankAccount {

public static double interestRate = 0.02;

}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

BankAccount zachAcc = new BankAccount(“Zach”, 20);

System.out.println(mikeAcc.interestRate); //0.02

System.out.println(BankAccount.interestRate); //0.02

mikeAcc.interestRate = 0.05;

System.out.println(zachAcc.interestRate); //0.05

8

Counting Objects Created

public class BankAccount {

private static int numAccounts = 0;

public BankAccount(String name,

�double balance) {

numAccounts++;

…

}

}

9

Unique ID for Objects

public class BankAccount {

private static int nextAccountNum = 0;

private int accountNum;

public BankAccount(String name,

�double balance) {

accountNum = nextAccountNum++;

…

}

}

10

Array of All Objects Created

public class BankAccount {

private static BankAccount[] accounts =

new BankAccount[100];

private static int nextAccountNum = 0;

public BankAccount(String name,

�double balance) {

accounts[nextAccountNum++] = this;

…

}

}

11

What would happen if we deleted this static modifier?

Array of All Objects Created

public class BankAccount {

private BankAccount[] accounts =

new BankAccount[100];

private static int nextAccountNum = 0;

public BankAccount(String name,

�double balance) {

accounts[nextAccountNum++] = this;

…

}

}

12

More Static Field Examples

Constants used by a class:

– Usually used with final keyword

– Only need to have one per class; don’t need
one in each object:

public static final double TEMP_CONVERT = 1.8;

– If variable TEMP_CONVERT is in class
Temperature, it is invoked by:

double t = Temperature.TEMP_CONVERT * temp;

Instance Methods

• These are what you know so far…

• These define the operations you can

perform on objects of a class.

• Methods typically operate on the instance

(non-static) fields of the class.

– Each object has a “copy” of the method just

as it has copies of the fields.

Static / Class Methods

15

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

BankAccount Class

int numAccounts

• Static methods are shared

by all objects of the class

• One copy for all objects
int getNumAccounts()

Static Methods

To define a class method, add the keyword

static to its definition.

public class BankAccount {

private static int numAccounts = 0;

…

public static int getNumAccounts() {

return numAccounts;

}

}

Calling Static Methods
public class BankAccount {

private static int numAccounts = 0;

…

public static int getNumAccounts() {

return numAccounts;

}

}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

System.out.println(mikeAccount.getNumAccounts()); //1

BankAccount zachAcc = new BankAccount(“Zach”, 20);

System.out.println(mikeAccount.getNumAccounts()); //2

System.out.println(BankAccount.getNumAccounts()); //2

Static Methods

• Static methods do not operate on a

specific instance of their class

• Have access only to static fields and

methods of the class

– Cannot access non-static ones

Static Methods Limitations
public class BankAccount {

private static int nextAccountNum = 0;

private int accountNum;

…

public static int getAccountNum() {

return accountNum;

}

}

Illegal, cannot access non-static field from static method

More Static Methods
• Static methods are also used when you need to

define a method on 2 objects.

public static BankAccount greaterBalance

(BankAccount ba1, BankAccount ba2)

{

if (ba1.balance() >= ba2.balance())

return ba1;

else

return ba2;

}

Static Method Examples

• For methods that use only the arguments and

therefore do not operate on an object
public static double pow(double b, double p)

// Math class, takes b to the p power

• For methods that only need static data fields

• We HAVE TO use the static key word on the main

method in the class that starts the program

– No objects exist yet for the main method to operate on!

The final keyword

• Sometimes you will declare and initialize a

variable with a value that will never

change.

• To prevent any accidental changes, Java

provides you with a way to fix the value of
any variable by using the final keyword

when you declare it.

The final keyword
• We declared PI as

public static double PI = 3.14159;

but this does not prevent changing its value:

MyMath.PI = 999999999;

• We use keyword final to denote a constant:

public static final double PI = 3.14159;

• Once we declare a variable to be final, it's

value can no longer be changed!

Final References
• Consider this final reference to a Point:

public static final Point ORIGIN =

new Point(0,0);

• This prevents changing the reference ORIGIN:

MyMath.ORIGIN = new Point(3, 4);

• BUT! You can still call methods on ORIGIN that

change the state of ORIGIN.

MyMath.ORIGIN.setX(4);

	l06_classes_and_objects
	l07_encapsulation_references
	l08_static_fields_methods.pdf

