
South Africa 2013

Lecture 1: Java BasicsLecture 1: Java Basics

http://aiti.mit.edu

Recap - Teaching Style

• Emphasis on self-learning:

– We will encourage you to discover your own

answers

– The most important skill you will ever learn

• Emphasis on participation:

– Ask questions during lecture

– Provide constructive criticism

– Suggest course topics

– Interrupt if we use jargon or idioms

3

Recap - Self-Learning

• Use MIT’s OpenCourseWare website to

teach yourself Java

• Website: http://ocw.mit.edu

• ebooks

• Why self-teach?

– Move beyond the course curriculum

– Develop a more advanced final project

– We are here to help!

4

http://ocw.mit.edu

Recap - Student Evaluation

• There are no tests!

• Students will be evaluated on labs and projects:

• Labs:

– Design/Code

– Output

– Post-lab interview

• Projects:

– Idea

– Milestone Presentations

– Demo

5

Recap - Collaboration

• Students are encouraged to collaborate on labs

and projects.

• However, copying code without understanding is

not allowed.

• Zero tolerance

– If found copying, .. Well, we are not sure if you belong

in the class. Its always better to ask for clarification

than to copy!!

6

Starting Point - Compiler

…

a = b + c

…

…

ld $r1, a

ld $r2, b

add $r3, $r1, $r2

st a, $r3

…

Compiler

High-Level

Code

Machine Code

• A program that translates a programming
language into machine code is called a compiler

• Typically, we must have a compiler for each
operating system/machine combination (platform)

Compiling Computer Programs

• Because different platforms require different machine
code, you must compile programs separately for
each platform, then execute the machine code.

program

compiler
compiler

compiler

Win
Mac

Unix

machine codemachine code
machine code

The Java Compiler is Different!

• The Java compiler produces an

intermediate format called bytecode.

• Bytecode is not machine code for any

real computer.

• Bytecode is machine code for a model

computer.

– This model computer is called the Java

Virtual Machine.

Java Program

compiler

Java Bytecode

Java Interpreter

• A Java Interpreter is required to execute the

bytecode on a real computer.

• A Java Interpreter converts the bytecode into

machine code.

– As the program executes

– Simulate the execution of the Java Virtual Machine on

the real computer

• You can run bytecode on any computer that has

a Java Interpreter (JRE) installed!

– Only have to compile once

– Can distribute the same bytecode to everyone

The Java Approach

Java Program

compiler

Java bytecode

Win

Mac

Unix

Interpreter

Interpreter

Interpreter

Advantages of Using Java

• Once a Java program is compiled you can run the
bytecode on any device with a Java Interpreter.
– Because you do not have to recompile the program for each

machine, Java is device independent.

• Java is safe. The Java language and compiler restrict
certain operations to prevent errors.

– Would you want an application to have total control of your

phone?

• Make calls, send SMS messages?

• Java standardizes many useful structures and
operations such as lists, managing network connections,
and providing graphical user interfaces

Disadvantages of Using Java

• Running bytecode through an interpreter is not
as fast as running machine code
– But this disadvantage is slowly disappearing

• Using device specific features (e.g., bluetooth) is
difficult sometimes because Java is device-
independent.

• In order to run a Java program on multiple
devices, each must have a Java Interpreter
– Ex: most Nokia phones come with Java Interpreter

Programming Methodology

1. Specify and analyze the problem

• Remove ambiguity

• Decide on inputs/outputs and algorithms

2. Design the program solution

• Organize problem into smaller pieces

• Identify existing code to reuse!

3. Implementation (programming)

4. Test and verify implementation

5. Maintain and update program

Writing Good Code

• A program that meets specification is not
necessarily good.

• Will you be able to make changes to it?

– Will you understand it after some time?

• Others might need to look at your code

– Can they understand it?

• Write your program so that is easy to
understand and extend!

– Spend extra time thinking about these issues.

Example Code: Comments

/* The HelloWorld class prints “Hello,

World!” to the screen */

public class HelloWorld {

public static void main(String[] args) {

// Prints “Hello, World!”

System.out.println("Hello, World!");

// Exit the program

System.exit(0);

}

}

Comments

• Comments are used to describe what your code

does as an aid for you or others reading your

code. The Java compiler ignores them.

• Comments are made using //, which comments

to the end of the line, or /* */, which

comments everything inside of it (including

multiple lines)

• Two example comments:
– /* The HelloWorld class prints “Hello, World!” to the

screen */

– // Prints “Hello, World!”

Comments on Commenting

• You may collaborate on software projects

with people around the world who you’ll

never meet

• Should be able to figure out how code

works by reading comments alone

• Anything that is not self-evident needs a

comment

• 50% of your code might be comments

• Coding is easy, commenting is not

South Africa 2013

Less Talk, more play!Less Talk, more play!

Lab Section 1

South Africa 2013

Variables and OperatorsVariables and Operators

http://aiti.mit.edu

Declaring Variables in Java

• Variables are created by declaring their type and their

name as follows:

• Declaring an integer named “x” :
– int x;

• Declaring a string named “greeting”:
– String greeting;

• Note that we have not assigned values to these

variables

type name;

Java Types: Integer Types

• Integer Types:

– int: Most numbers you will deal with.

– long: Big integers; science, finance,

computing.

– short: Smaller integers. Not as useful.

– byte: Very small integers, useful for small

data.

Java Types: Other Types

• Floating Point (Decimal) Types:

– float: Single-precision decimal numbers

– double: Double-precision decimal numbers.

– Some phone platforms do not support FP.

• String: Letters, words, or sentences.

• boolean: True or false.

• char: Single Latin Alphanumeric

characters

Variable Name Rules

• Variable names (or identifiers) may be any

length, but must start with:

– A letter (a – z, A-Z),

– A dollar sign ($),

– Or, an underscore (_).

• Identifiers cannot contain special operation

symbols like +, -, *, /, &, %, ^, etc.

• Certain reserved keywords in the Java language

are illegal.

– int, double, String, etc.

Naming Variables

• Java is case sensitive

• A rose is not a Rose is not a ROSE

• Choose variable names that are

informative

– Good: int studentExamGrade;

– Bad: int tempvar3931;

• Camel Case”: Start variable names with

lower case and capitalize each word:

– “camelsHaveHumps”.

Review

• Which of the following are valid variable names?

– $amount

– 6tally

– my*Name

– salary

– _score

– first Name

– short

Integer Types

• There are 4 primitive integer types: byte,

short, int, long.

• Each type has a maximum value, based

on its underlying binary representation:

– Bytes: ± 128 (8 bits)

– Short: ± 215 ≈ 32,000 (16 bits)

– Int: ± 231 ≈ 2 billion (32 bits)

– Long: ± 263 ≈ really big (64 bits)

10

Overflow

• What happens when if we store Bill

Gates’s net worth in an int?

– Int: ± 231 ≈ 2 billion (32 bits)

– Bill’s net worth: > $40 billion USD

• Undefined!

11

Floating Point Types

• Initialize doubles as you would write a

decimal number:
– double y = 1.23;

– double w = -3.21e-10; // -3.21x10-10

• Doubles are more precise than Floats, but

may take longer to perform operations.

Floating Point Types

• We must be careful with integer division:
– double z = 1/3; // z = 0.0 … Why?

• When we want to convert one type to another,
we use type casting

• The syntax is as follows:

• Example code:
– double decimalNumber = 1.234;

– int integerPart = (int)decimalNumber;

• Results:
– decimalNumber == 1.234;

– integerPart == 1;

Type Casting

(new type)variable

Boolean Type

• Boolean is a data type that can be used
in situations where there are two
options, either true or false.

• The values true or false are case-
sensitive keywords. Not True or TRUE.

• Booleans will be used later for testing
properties of data.

• Example:
– boolean monsterHungry = true;

– boolean fileOpen = false;

Character Type

• Character is a data type that can be used to

store a single characters such as a letter,

number, punctuation mark, or other symbol.

• Characters are a single letter enclosed in

single quotes.

• Example:

– char firstLetterOfName = 'e' ;

– char myQuestion = '?' ;

String Type
• Strings are not a primitive. They are what’s

called an Object, which we will discuss later.

• Strings are sequences of characters

surrounded by double quotations.

• Strings have a special append operator + that

creates a new String:
– String greeting = “Jam” + “bo”;

– String bigGreeting = greeting + “!”;

Review

• What data types would you use to store

the following types of information?:

– Population of Kenya

– World Population

– Approximation of π

– Open/closed status of a file

– Your name

– First letter of your name

– $237.66

int

long

double

boolean

String

char

double

A Note on Statements

• A statement is a command that causes

something to happen.

• All statements are terminated by semicolons ;

• Declaring a variable is a statement.

• Method (or function) calls are statements:
– System.out.println(“Hello, World”);

• In lecture 4, we’ll learn how to control the

execution flow of statements.

What are Operators?

• Expressions can be combinations of variables,

primitives and operators that result in a value

• Operators are special symbols used for:

- mathematical functions

- assignment statements

- logical comparisons

• Examples with operators:

3 + 5 // uses + operator

14 + 5 – 4 * (5 – 3) // uses +, -, * operators

The Operator Groups

• There are 5 different groups of
operators:

- Arithmetic Operators

- Assignment Operator

- Increment / Decrement Operators

- Relational Operators

- Conditional Operators

• The following slides will explain the
different groups in more detail.

Arithmetic Operators

• Java has the usual 5 arithmetic operators:

– +, -,×, /, %

• Order of operations (or precedence):

1.Parentheses (Brackets)

2.Exponents (Order)

3.Multiplication and Division from left to right

4.Addition and Subtraction from left to right

Order of Operations (Cont’d)

• Example: 10 + 15 / 5;

• The result is different depending on whether
the addition or division is performed first

(10 + 15) / 5 = 5

10 + (15 / 5) = 13

Without parentheses, Java will choose the
second case

• You should be explicit and use parentheses
to avoid confusion

Integer Division

• In the previous example, we were lucky
that (10 + 15) / 5 gives an exact

integer answer (5).

• But what if we divide 63 by 35?

• Depending on the data types of the

variables that store the numbers, we will

get different results.

Integer Division (Cont’d)
• int i = 63;

int j = 35;

System.out.println(i / j);

Output: 1

• double x = 63;

double y = 35;

System.out.println(x / y);

Output: 1.8

• The result of integer division is just the
integer part of the quotient!

Assignment Expression

• The basic assignment operator (=) assigns
the value of expr to var

• Java allows you to combine arithmetic and

assignment operators into a single statement

• Examples:
x = x + 5; is equivalent to x += 5;

y = y * 7; is equivalent to y *= 7;

name = value

Increment/Decrement Operators

• ++ is called the increment operator. It is used
to increase the value of a variable by 1.

For example:
i = i + 1; can be written as:
++i; or i++;

• -- is called the decrement operator. It is
used to decrease the value of a variable by 1.

i = i - 1; can be written as:
--i; or i--;

Increment Operators (cont’d)

• The increment / decrement operator has

two forms :

- Prefix Form e.g ++i; --i;

- Postfix Form e.g i++; i--;

Prefix increment /decrement

• The prefix form first adds/ subtracts 1 from
the variable and then continues to any
other operator in the expression

• Example:

int numOranges = 5;
int numApples = 10;
int numFruit;
numFruit = ++numOranges + numApples;

numFruit has value 16

numOranges has value 6

Postfix Increment/ Decrement
• The postfix form i++, i-- first evaluates the

entire expression and then adds 1 to the
variable

• Example:

int numOranges = 5;
int numApples = 10;

int numFruit;

numFruit = numOranges++ + numApples;

numFruit has value 15

numOranges has value 6

Relational (Comparison) Operators

• Relational operators compare two values

• They produce a boolean value (true or

false) depending on the relationship

a is less than ba < b

a is less than or equal to ba <= b

a is not equal to ba != b

a is equal to ba == b

a is greater than or equal to ba >= b

a is greater than ba > b

….Is true whenOperation

Note: ==

sign!

Examples of Relational Operations
int x = 3;

int y = 5;

boolean result;

1) result = (x > y);

result is assigned the value false because

3 is not greater than 5

2) result = (15 == x*y);

now result is assigned the value true because the product of

3 and 5 equals 15

3) result = (x != x*y);

now result is assigned the value true because the product of

x and y (15) is not equal to x (3)

Conditional Operators

• Conditional operators can be referred to as
boolean operators, because they are only

used to combine expressions that have a
value of true or false.

NOT!

OR||

AND&&

NameSymbol

Truth Table for Conditional Operators

TrueFalseFalseFalseFalse

TrueTrueFalseTrueFalse

FalseTrueFalseFalseTrue

FalseTrueTrueTrueTrue

!xx || yx && yyx

Examples of Conditional Operators

boolean x = true;

boolean y = false;

boolean result;

– Let result = (x && y);

result is assigned the value false

– Let result = ((x || y) && x);

(x || y) evaluates to true
(true && x) evaluates to true

now result is assigned the value true

Using && and ||

• false && …

• true || …

• Java performs short circuit evaluation

– Evaluate && and || expression s from left to

right

– Stop when you are guaranteed a value

Short-Circuit Evaluation
(a && (b++ > 3));

What happens if a is false?

• Java will not evaluate the right-hand expression (b++
> 3) if the left-hand operator a is false, since the
result is already determined in this case to be false.
This means b will not be incremented!

(x || y);

What happens if x is true?

• Similarly, Java will not evaluate the right-hand
operator y if the left-hand operator x is true, since
the result is already determined in this case to be
true.

Review

1) What is the value of result?
int x = 8;
int y = 2;
boolean result = (15 == x * y);

2) What is the value of result?
boolean x = 7;
boolean result = (x < 8) && (x > 4);

3) What is the value of z?
int x= 5;
int y= 10;
int z= y++ + x+ ++y;

newnativelonginterfac

e

int

returnpublicprotectedprivatepackage

switchsuperstrictfpstaticshort

whileviolatevoidtry

transientthrowsthrowthissynchronized

instanceofimportimplementsifgoto

forfloatfinallyfinalextends

elsedoubledodefaultcontinue

constclasscharcatchcase

bytebreakbooleanassertabstract

Appendix I: Reserved Keywords

Appendix II: Primitive Data Types

This table shows all primitive data types along

with their sizes and formats:

Variables of this kind can have a value from:

-9223372036854775808 to +9223372036854775807 and

occupy 64 bits in memory

long

Variables of this kind can have a value from:

-2147483648 to +2147483647 and occupy 32 bits in memory

int

Variables of this kind can have a value from:

-32768 to +32767 and occupy 16 bits in memory

short

Variables of this kind can have a value from:

-128 to +127 and occupy 8 bits in memory

byte

DescriptionData Type

Appendix II: Primitive Data Types

Variables of this kind can have a value from:

4.9e(-324) to 1.7e(+308)

double

Variables of this kind can have a value from:

1.4e(-45) to 3.4e(+38)

float

DescriptionData Type

Real Numbers

Variables of this kind can have a value from:

True or False

boolean

Variables of this kind can have a value from:

A single character

char

Other Primitive Data Types

South Africa 2013

Nuff said, time for some action!Nuff said, time for some action!

Lab Section 2

South Africa 2013

Control StructuresControl Structures

http://aiti.mit.edu

What are Control Structures?
• Without control structures, a computer would evaluate all

instructions in a program sequentially

• Allow you to control:

– the order in which instructions are evaluated

– which instructions are evaluated

– the “flow” of the program

• Use pre-established code structures:

– block statements (anything contained within curly brackets)

– decision statements (if, if-else, switch)

– Loops (for, while)

Block Statements

• Statements contained within curly brackets

• Evaluated sequentially when given

instruction to “enter” curly brackets

• Most basic control structure (building block

of other control structures)

{

statement1;

statement2;

}

Decision Statements: if-then

The “if” decision statement causes a

program to execute a statement

conditionally*

if (condition) {

statement;

}

next_statement;

*Executes a statement when a condition is true

Dissecting if-then
if (condition) {

statement;
}

next_statement;

• The condition must produce either true or
false, also known as a boolean value

• If condition returns true, statement is
executed and then next_statement

• If condition returns false, statement is not
executed and the program continues at
next_statement

execute
statement

execute
next_statement

condition
true?

if (condition) {

statement;

}

next_statement;
yes

no

if-then Statement Flow Chart

if-then Example

int price = 5;

if (price > 3) {

System.out.println(“Too expensive”);

}

//continue to next statement

Output:

Too expensive

if-then-else Statements
• The basic “if” statement can be extended by adding the

“else” clause in order to do something if expression is false
if (condition) {

statement1;
}
else {
statement2;

}
next_statement;

• Again, the condition must produce a boolean value

• If condition returns true, statement1 is executed and then
next_statement is executed.

• If condition returns false, statement2 is executed and
then next_statement is executed.

condition

TRUE?

execute
statement1

execute
statement2

execute
next_statement

if (condition){

statement1;

}

else {

statement2;

}

next_statement;

noyes

if-then-else Statement Flow Chart

if-then-else Example

int price = 2;

if (price > 3) {

System.out.println(“Too expensive”);

}

else {

System.out.println(“Good deal”);

}

//continue to next statement

Output:

Good deal

Chained if-then Statements
• Note that you can combine if-else statements below to

make a chain to deal with more than one case

if (grade == 'A')

System.out.println("You got an A.");

else if (grade == 'B')

System.out.println("You got a B.");

else if (grade == 'C')

System.out.println("You got a C.");

else

System.out.println("You got an F.");

condition1?
execute

statement1if (condition1) {

statement1;

} else if (condition2) {

statement2;

} else if (condition3) {

statement3;

} else {

statement_else;

}

next_statement;

Chained if-then-else Statement Flow

Chart

yes

condition2?
execute

statement2

yes

condition3?
execute

statement3

yes

execute
statement_else

execute
next_statement

no

no

no

switch Statements
• The switch statement is another way to test several cases generated by

a given expression.

• The expression must produce a result of type char, byte, short or
int, but not long, float, or double.

switch (expression) {

case value1:
statement1;
break;

case value2:
statement2;
break;

default:
default_statement;
break;

}

• The break; statement exits the switch statement

expression

equals
value1?

expression

equals
value2?

Do default action

Do value1 thing

Do value2 thing

break

break

break

Continue the

program

switch (expression){

case value1:

// Do value1 thing

break;

case value2:

// Do value2 thing

break;

...

default:

// Do default action

break;

}

// Continue the program

y

y

n

n

switch Statement Flow Chart

Remember the Example…
• Here is the example of chained if-else statements:

if (grade == 'A')
System.out.println("You got an A.");

else if (grade == 'B')
System.out.println("You got a B.");

else if (grade == 'C')
System.out.println("You got a C.");

else
System.out.println("You got an F.");

switch (grade) {

case 'A':

System.out.println("You got an A.");

break;

case 'B':

System.out.println("You got a B.");

break;

case 'C':

System.out.println("You got a C.");

break;

default:

System.out.println("You got an F.");

}

Chained if-then-else as switch
• Here is the previous example as a switch

What if there are no breaks?
• Without break, switch statements will execute the first statement for

which the expression matches the case value AND then evaluate all
other statements from that point on

• For example:

switch (expression) {

case value1:
statement1;

case value2:
statement2;

default:
default_statement;

}

• NOTE: Every statement after the true case is executed

y

y

n

n

switch (expression){

case value1:

// Do value1 thing

case value2:

// Do value2 thing

...

default:

// Do default action

}

// Continue the program

expression

equals
value1?

Do value1 thing

Do value2 thing

Do default action

expression

equals
value2?

Continue the

program

Switch Statement Flow Chart w/o breaks

Loops

• A loop allows you to execute a statement or block of

statements repeatedly.

• There are 4 types of loops in Java:

1. while loops

2. do-while loops

3. for loops

4. foreach loops (coming soon!)

The while Loop

while (condition){

statement

}

• This while loop executes as long as condition is

true. When condition is false, execution continues

with the statement following the loop block.

• The condition is tested at the beginning of the loop, so if
it is initially false, the loop will not be executed at all.

Test condition

is true?

The while loop

Execute loop

statement(?)

Next statement

while (expression){

statement

}

yes

no

while Loop Flow Chart

Example

int limit = 4;

int sum = 0;

int i = 1;

while (i < limit){

sum += i;

i++;

}

• What is the value of sum ?

6

i = 1

i = 2

i = 3

i = 4

sum = 1

sum = 3

sum = 6

do-while Loops

• Similar to while loop but guarantees at

least one execution of the body

do {

statement;

}

while(condition

)

do-while Flowchart

execute
statement

execute
next_statement

condition
true?

yes

no

do {

statement;

}

while(condition)

next_statement;

do-while Example

boolean test = false;

do {

System.out.println(“Hey!”)

}

while(test)

Output:

Hey!

for Loop

• Control structure for capturing the most
common type of loop

for (i = start; i <= end; i++)

{
...

}

i = start;

while (i <= end)

{

. . .

i++;

}

Dissecting the for Loop

The control of the for loop appear in parentheses and is made up of three
parts.

1. The first part, the initialization, sets the initial conditions
for the loop and is executed before the loop starts.

2. Loop executes so long as the condition is true and exits
otherwise

1. The third part of the control information, the update, is used to
increment the loop counter. This is executed at the end of each
loop iteration.

for (initialization; condition; update)

{
statement;

}

initialization

The for loop

condition

== true

update

statements

yes

next_statement

no
for (initialization;

condition;

update)

{

//statements

}

next_statement;

for Loop Flow Chart

Example
int limit = 4;

int sum = 0;

for(int i = 1; i<=limit; i++)

{

sum += i;

}

• What is the value of sum ?

10

i = 1

i = 2

i = 3

i = 4

i = 5

sum = 1

sum = 3

sum = 6

sum = 10

-- --

Another Example

for (int div = 0; div<1000; div++) {

if (div % 12 == 0){

System.out.println(div+"is divisible by 12");

}

}

• This loop will display every number from 0 to 999 that is

evenly divisible by 12.

Other Possibilities
• If there is more than one variable to set up or increment they are separated by a

comma.

for (i=0, j=0; i*j<1000; i++, j+=2) {

System.out.println(i+"*"+j+"="+i*j);

}

• You do not have to fill every part of the control of the for loop but you must still

have two semi-colons.

for (int i=0; i<100;) {

sum+=i;

i++;

}

*Straying far from convention may make code difficult to

understand and thus is not common

Using the break Statement in Loops

• We have seen the use of the break statement in the switch
statement.

• In loops, you can use the break statement to exit the current
loop you are in. Here is an example:

int index = 0;

while (index <= 4) {

index++;

if (index == 3)

break;

System.out.println("The index is “

+ index);

}

The index is 1

The index is 2

index = 1

index = 2

index = 3

Using the continue Statement in Loops

• Continue statement causes the loop to jump to the next
iteration

• Similar to break, but only skips to next iteration; doesn’t exit
loop completely

int index = 0;

while (index <= 4){

index++;

if (index == 3)

continue;

System.out.println("The index is “

+ index);

}

The index is 1

The index is 2

-- --

The index is 4

index = 1

index = 2

index = 3

Index = 4

Nested Loops – Example

• Printing a triangle

for (int i=1; i<=5; i++){

for (int j=1; j<=i; j++){

System.out.println(“*”);

}

} *

* *

* * *

* * * *

* * * * *

Control Structures Review Questions

You are withdrawing money from a savings account.

How do you use an If Statement to make sure you do
not withdraw more than you have?

if (amount < balance)

{

balance = balance – amount;

}

//next statement

Which Control Structure?

• As a programmer, you will never be asked

something like: “Write a for loop to…”

• You will need to implement logic in your

program that meets your specification and

requirements

• With experience, you will know which

control structure to use.

37

South Africa 2013

Play time!Play time!

Lab Section 3

South Africa 2013

ArraysArrays

http://aiti.mit.edu

What are Arrays?
• An array is a series of compartments to

store data.

• Essentially a block of variables.

• In Java, arrays can only hold one type.

• For example, int arrays can hold only
integers and char arrays can only hold
characters.

Array Visualization and Terms
• Arrays have a type, name, and size.

• Array of three integers named prices :

– prices :

• Array of four Strings named people:

– people :

(Indices) 0 1 2 3

• We refer to each item in an array as an
element.

• The position of each element is known
as its index.

intint int

String String String String

Declaring an Array
• Array declarations similar to variables,

but use square brackets:

– datatype[] name;

• For example:

– int[] prices;

– String[] people;

• Can alternatively use the form:

– datatype name[];

– int prices[];

Allocating an Array
• Unlike variables, we need to allocate memory to

store arrays. (malloc() in C.)

• Use the new keyword to allocate memory:

– name = new type[size];

– prices = new int[3];

– people = new String[5];

• This allocates an integer array of size 3 and a

String array of size 5.

• Can combine declaration and allocation:

– int[] prices = new int[3];

Array Indices
• Every element in an array is referenced

by its index.

• In Java, the index starts at 0 and ends
at n-1, where n is the size of the array.

• If the array prices has size 3, its valid
indices are 0, 1, and 2.

• Beware “Array out of Bounds” errors.

Using an Array
• We access an element of an array using

square brackets []:

– name[index]

• Treat array elements just like a variable.

• Example assigning values to each
element of prices:

– prices[0] = 6;

– prices[1] = 80;

– prices[2] = 10;

Using an Array
• We assign values to elements of String

arrays in a similar fashion:

– String[] people;

– people = new String[5];

– people[0] = ”Michael”;

– people[1] = ”Michelle”;

– people[2] = ”Cory”;

– people[3] = ”Zach”;

– people[4] = ”Julian”;

Initializing Arrays
• You can also specify all of the items in an

array at its creation.

• Use curly brackets to surround the array’s

data and separate the values with commas:

– String[] people = {“Michael”,

“Michelle”, “Zach”, “Cory”,

“Julian”};

– int[] prices = {6, 80, 10};

• All the items must be of the same type.

Vocabulary Review

• Allocate - Create empty space that will

contain the array.

• Initialize - Fill in a newly allocated array

with initial values.

• Element - An item in the array.

• Index - Element’s position in the array.

• Size or Length - Number of elements.

Review 1
Which of the following sequences of

statements does not create a new

array?

a) int[] arr = new int[4];

b) int[] arr;

arr = new int[4];

c) int[] arr = { 1, 2, 3, 4};

d) int[] arr;

Lengths of Array
• Each array has a default field called length

• Access an array’s length using the format:

– arrayName.length;

• Example:

– String[] people = {“Michael”,

“Michelle”, “Zachary”, “Cory”, “Julian”};

– int numPeople = people.length;

• The value of numPeople is now 5.

• Arrays are always of the same size. Their lengths

cannot be changed once they are created.

Example
• Sample Code:

String[] people = {“Gleb”,

“Lawrence”, “Michael”,

“Stephanie”, “Zawadi”};

for(int i=0; i<names.length; i++)

System.out.println(names[i]+”!");

• Output:
Gleb!

Lawrence!

Michael!

Stephanie!

Zawadi!

Review
• Given this code fragment:

– int[] data = new int[10];

– System.out.println(data[j]);

• Which are legal values of j?

a) -1

b) 0

c) 3.5

d) 10

Review
• Decide what type and size of array (if

any) to store each data set:

– Score in each quarter of a football game.

– Your name, date of birth, and height.

– Hourly temperature readings for a week.

– Your daily expenses for a year.

int[] quarterScore = new int[4];

Not appropriate. Different types.

float[] tempReadings = new float[168];

float[] dailyExpenses = new float[365];

Exercise

• What are the contents of c after the

following code segment?

int [] a = {1, 2, 3, 4, 5};

int [] b = {11, 12, 13};

int [] c = new int[4];

for (int j = 0; j < 3; j++) {

c[j] = a[j] + b[j];

}

632

791

480

10

value at row index 2,

column index 0 is 3

2-Dimensional Arrays
• The arrays we've used so far

can be thought of as a single
row of values.

• A 2-dimensional array can be
thought of as a grid (or matrix)
of values.

• Each element of the 2-D array
is accessed by providing two
indices: a row index and a
column index.

• A 2-D array is actually just an
array of arrays

2-D Array Example
• Example: A landscape grid of a 20 x 55 acre

piece of land. We want to store the height of

the land at each row and each column of the

grid.

• We declare a 2-D array two sets of square

brackets:

– double[][] heights;

– heights = new double[20][55];

• This 2-D array has 20 rows and 55 columns

• To access the acre at row index 11 and
column index 23: heights[11][23]

South Africa 2013

Lights, Camera, Action!Lights, Camera, Action!

Lab Section 4

South Africa 2013

MethodsMethods

http://aiti.mit.edu

Agenda

• What a method is

• Why we use methods

• How to declare a method

• The four parts of a method

• How to use (invoke) a method

• The purpose of the main method

The Concept of a Method

• Methods are a way of organizing a sequence of
statements into a named unit.

– Reusable

– Parameterizable (can accept inputs)

– Organize code into smaller units

• Easier to understand

• Any complex process that can exist on its own

should be a method

– Better to have more methods, even if they are not

reused.

method

inputs outputs

The Concept of a Method

• Methods can accept inputs (called

arguments)

• They can then perform some operations

with the arguments

• And can output a value (called a return

value) that is the result of the

computations

Square Root

Method

numbernumber

Square Root Method

• The square root method accepts a single

number as an argument and returns the

square root of that number.

(argument) (return value)

Square Root

Black Box

4 +2,-2

Square Root Method (con’t)

• The computation of square roots involves
many intermediate steps between input and
output.

• When we use square root, we don’t care
about these steps or details. All we need is to
get the correct output.

• Hiding the internal workings of a method and
providing the correct answer is known as
abstraction

• A method has 4 parts: the return type, the name,

the arguments, and the body:

double sqrt(double num) {

// a set of operations that compute

// the square root of a number

}

• The type, name and arguments together is

referred to as the signature of the method

• Methods with same names must have unique

signature

Declaring Methods

type name arguments

body

Return Type of a Method
• The return type of a method may be any data

type....

• The return type of a method is a promise for

what data type the output will be

– A method can return different outputs than inputs

– A method cannot return multiple types, returns one

type

• Methods can also return nothing in which case

they are declared void.

method

inputs int ,double, OR string...

Return Statements
• The return statement is used in a method to output the result of

the method computation.

• It has the form:

– return expression-value;

• The type of the expression_value must be the same as the
type of the method:

double sqrt(double num) {

double answer;

// Compute the square root of num

// and store in answer

return answer;

}

• What is the return type of this method?

Return Statements

A method exits immediately after it executes the return statement

double sqrt(double num) {

double answer;

// Compute the square root of num

// and store in answer

return answer;

answer = 5 + 4; //never executed, illegal

}

Multiple Returns

• An example using multiple returns:

int absoluteValue (int num) {

if (num < 0)

return –num;

else

return num;

}

void Methods
• A method of type void does not return a value

• Used often in practice.

– Perform some computation that does not produce a

value

– Affect system state, ex: System.out.println()

• A void method can have a return statement without any
specified value. i.e. return;

• If no return statement is used in a method of type void, it

automatically returns at the end

method

inputs

Method Arguments

• Methods can take input in the form of

arguments.

• Arguments are used as variables inside the

method body.

• Like variables, arguments must have their type

specified.

• Arguments are specified inside the parentheses

that follow the name of the method.

Example Method
• Here is an example of a method that

divides two doubles:

double divide(double a, double b) {

double answer;

answer = a / b;

return answer;

}

divide
a,b answer = a/b

Method Arguments
• Multiple method arguments are separated by

commas:

double divide(double a, double b) {

double answer;

answer = a / b;

return answer;

}

• Arguments may be of different types (double/int)

– double divide(int a, int b)

• When calling method, exact sequence of input
types must be applied

The Method Body
• The body of a method is a block

specified by curly brackets i.e { }.

The body defines the actions of the

method.

• The method arguments can be

used anywhere inside of the body.

• All methods must have curly

brackets to specify the body even if

the body contains only one

statement or no statements.

double divide(

double a, double b)

{

double answer;

answer = a / b;

return answer;

}

Invoking Methods

• To call a method, specify the name of the method followed by a
list of comma separated arguments in parentheses:

divide(10, 2); //Computes 10/2

• If the method has no arguments, you still need to follow
the method name with empty parentheses:

int size() {

//Compute and return size

}

…

size(); //Calls size

Method Variable Scoping

• For now, methods can only access their

own arguments and local variables.

– A method cannot access arguments/locals

from other methods

– Even if one method calls another

• Example…

18

Recursive Methods
• A method can also call itself!

– When a method calls itself, it needs a

stopping condition, called the base case
• Or else it would call itself without end

– Example Factorial:

• Factorial of n, denoted n!:
– n × (n – 1) × (n – 2) ×… × 0

– 0! = 1 (base case)

Factorial Implementation

20

int factorial(int n) {

if (n==0)
return 1;

else {
return n *

factorial (n-1);
}

}

Static Methods
• For now, all the methods we write in lab will be

static.

static double divide(double a,

double b) {

return a / b;

}

• We'll learn what it means for a method to be
static in a later lecture

main – A Special Method

• The only method that we have used in lab up
until this point is the main method.

• The main method is where a Java program
always starts when you run a class file (entry
point)

• The main method is static and has a strict
signature which must be followed:

public static void main(String[] args) {

. . .

}

main Method (con’t)
class SayHi {

public static void main(String[] args) {

System.out.println("Hi, " + args[0]);

}

}

• If you were to type java Program arg1 arg2 …
argN on the command line, anything after the name
of the class file is automatically entered into the args
array:

java SayHi Sonia

• In this example args[0] will contain the String
"Sonia", and the output of the program will be "Hi,
Sonia".

Methods Review

• What are the four parts of a method and

what are their functions?

1.Return type – data type returned by
the method

2. Name – name of the method

3. Arguments – inputs to the method

4. Body – sequence of instructions
executed by the method

What is wrong with the following?
static double addSometimes(num1, num2){

double sum;

if (num1 < num2){

sum = num1 + num2;

String completed = “completed”;

return completed;

}

}

– Types for the arguments num1 and num2 are not specified

– String completed does not match the correct double return
type

– Method addSometimes does not always return an answer.
This will cause an error in Java because we specified that
addSometimes would always return a double.

Example
class Max {

public static void main(String args[]) {

if (args.length == 0) return;

int max = Integer.parseInt(args[0]);

for (int i=1; i < args.length; i++) {

if (Integer.parseInt(args[i]) > max) {

max = Integer.parseInt(args[i]);

}

}

System.out.println(max);

}

}

After compiling, if you type java Max 3 2 9 2 4
the program will print out 9

Important Points Covered .…

• Methods capture a piece of computation we wish to
perform repeatedly into a single abstraction

• Methods in Java have 4 parts: return type, name,
arguments, body.

• The return type and arguments may be either
primitive data types (i.e. int) or complex data types
(i.e. Objects), which we will cover next lecture

• main is a special Java method which the java
interpreter looks for when you try to run a class file

• main has a strict signature that must be followed:
public static void main(String args[])

South Africa 2013

Let’s get to work!Let s get to work!

Lab Section 5

	java_l1_introduction
	java_l2_variables_operators
	java_l3_control_structures
	java_l4_arrays
	java_l5_methods.pdf

