
South Africa 2013

Lecture 8: Accessing the Web and Unit TestsLecture 8: Accessing the Web and Unit Tests

http://aiti.mit.edu

Interacting with the Web

Thursday, July 5, 12

How to Access Web
Content

1. Give your app permission to access the web
2. Open a connection to a URL
3. Read data from the URL and store it

somewhere
4. Display the data from the URL on your app

Thursday, July 5, 12

How to Access Web
Content

1. Give your app permission to access the web
2. Open a connection to a URL
3. Read data from the URL and store it

somewhere
4. Display the data from the URL on your app

Thursday, July 5, 12

Give your app permission
to access the web

• Find AndroidManifest.xml file

• Navigate to the Permissions tab

• Select “Add → Uses Permission”

• Select android.permission.INTERNET
from the drop-down menu

Thursday, July 5, 12

How to Access Web
Content

1. Give your app permission to access the web
2. Open a connection to a URL
3. Read data from the URL and store it

somewhere
4. Display the data from the URL on your app

Thursday, July 5, 12

Open a connection to a
URL

• A URL is a type of URI

• Sample code:

URL myURL;
myURL = new URL("http://myWebsite.com");
HttpURLConnection conn =
 (HttpURLConnection) url.openConnection();

Thursday, July 5, 12

How to Access Web
Content

1. Give your app permission to access the web
2. Open a connection to a URL
3. Read data from the URL and store it

somewhere
4. Display the data from the URL on your app

Thursday, July 5, 12

Read data from the URL and store
it somewhere

• Get data from the URL
InputStream in = conn.getInputStream();

Thursday, July 5, 12

Read data from the URL and store
it somewhere

• Get data from the URL

• Use a reader to convert the data into the format you
want. Useful Java classes.
○ InputStreamReader

○ BufferedReader

○ StringBuffer

○ CharBuffer

InputStream in = conn.getInputStream();

Thursday, July 5, 12

Read data from the URL and store
it somewhere

• Sample code
(printing data out instead of storing)
BufferedReader in =
 new BufferedReader(
 new InputStreamReader(conn.getInputStream()));
String inputLine;

while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);
}

Thursday, July 5, 12

Read data from the URL and store
it somewhere

• May encounter methods that throw
exceptions, such as:
○ MalformedURLException

(new URL() throws when the string isn’t a URL)

○ IOException
(getInputStream() throws on bad connection)

• Handle them gracefully
○ How should the app work without Internet?

Thursday, July 5, 12

How to Access Web
Content

1. Give your app permission to access the web
2. Open a connection to a URL
3. Read data from the URL and store it

somewhere
4. Display the data from the URL on your app

Thursday, July 5, 12

Display the data from the URL
on your app

Access your stored data and display it using
whatever combination of layouts and widgets

that you choose!

Thursday, July 5, 12

Unit Tests and JUnit

Thursday, July 5, 12

What are unit tests?

• Small pieces of code that test your code

○ Test the smallest testable piece (unit)

○ Tests interact with your main code

Thursday, July 5, 12

Why unit test?

• Guarantee your code does what you say

• Uncover corner cases early on

○ Ensure graceful degradation (GPS unavailable?)

• Debug before you release

• Can help guide development

○ Test-driven development (write tests first)

Thursday, July 5, 12

What goes into a unit test?

• Assertion – A test of a single property or value (e.g. assert
that “1+1” gives “2”)

• Test Case – A set of assertions that test a single function
or use case

• Test Suite – A collection of related Test Cases to run
together

• Test Runner – Code that runs the Test Suites

• Mock Object – An object substituting for another (when
the object itself is not being tested)

Thursday, July 5, 12

Some Types of Assertions

• All can take an extra first argument String message to print
out when the assertion fails

• org.junit.Assert.

○ assertEquals(expected, actual)

■ Test that expected and actual are equal (.equals())

○ assertTrue(condition)/assertFalse(condition)

■ Test that condition is true/false

○ fail()

■ Always fail

See also: http://junit.sourceforge.net/javadoc/org/junit/Assert.html

Thursday, July 5, 12

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

More Types of Assertions

• android.test.MoreAsserts.

○ assertMatchesRegex(expectedRegex, actual)

■ Test that actual matches regular expression expectedRegex
○ assertEmpty(iterable)

■ Test that iterable contains no objects
○ assertContentsInOrder(iterable, expected...)

assertContentsInAnyOrder(iterable, expected...)

■ Test that iterable contains exactly all of the remaining
arguments in exact/any order and nothing else

See also: http://developer.android.com/reference/android/test/MoreAsserts.html

Thursday, July 5, 12

http://developer.android.com/reference/android/test/MoreAsserts.html
http://developer.android.com/reference/android/test/MoreAsserts.html

Mock Objects

• Objects that implement an interface
(i.e. they look like the interface)

• But results of functions may be pre-defined
(i.e. behavior is deterministic)

Thursday, July 5, 12

Mock Objects: Example

public interface ProxySettings {
 public abstract String fetchWithProxy(URL url);
}

public class Weather {
 public static String fetchCurrentWeather(
 String place, ProxySettings proxy) {
 /* ... */
 return proxy.fetchWithProxy(url);
 }
}

ProxySettings proxy = new DeviceProxySettings();
String s = Weather.fetchCurrentWeather("Mumbai", proxy);
Assert.assertEquals(s, "Rain");

Thursday, July 5, 12

Mock Objects: Example

Problem: DeviceProxySettings is device-specific!
Also, if I don’t use a proxy, I can’t test!

Solution: Make a mock object (class: MockProxySettings)!

Thursday, July 5, 12

Mock Objects: Example

public class MockProxySettings implements ProxySettings {
 public String fetchWithProxy(URL url) {
 /* Fetch without a proxy! */
 }
}

ProxySettings proxy = new MockProxySettings();
String s = Weather.fetchCurrentWeather("Mumbai", proxy);
Assert.assertEquals(s, "Rain");

NOTE: What MockProxySettings does isn’t important.
What we care about is that fetchCurrentWeather works
with a class that behaves like a ProxySettings interface.

Thursday, July 5, 12

Unit Testing with JUnit

Thursday, July 5, 12

Making a TestCase

public class Email {
 private String mSubject; // And so on...

 public Email(String from, String subject, String body) {
 mSubject = subject;
 // And so on...
 }

 public String getSubject() {
 return mSubject;
 }
}

Thursday, July 5, 12

Making a TestCase

public class EmailTestCase extends TestCase {
 public Email myEmail;

 protected void setUp() throws Exception {
 super.setUp();
 /* Set up the objects which will be tested. */
 myEmail = new Email("From", "Subject", "Body");
 }

 protected void tearDown() throws Exception {
 super.tearDown();
 /* Destroy the objects that were tested. */
 }
}

Thursday, July 5, 12

Adding Tests

public class EmailTestCase extends TestCase {
 public void testSubject() {
 /* Testing that getSubject() returns what we expect. */
 assertEquals(myEmail.getSubject(), "Subject");
 }
}

All tests start with test!

NOTE: TestCase extends [is a child class of] Assert, so
assertEquals may be called without referring to Assert.

Thursday, July 5, 12

Collecting Tests in a
TestSuite

public class MyTestSuiteBuilder {
 public static Test suite() {
 /* Create a TestSuite and add each test. */
 TestSuite suite = new TestSuite();
 suite.addTest(new EmailTest("testSubject"));
 return suite;
 }
} or

 public static Test suite() {
 /* Create a TestSuite and add each test. */
 TestSuite suite = new TestSuite(EmailTest.class);
 return suite;
 }

Thursday, July 5, 12

Unit Testing on Android

Thursday, July 5, 12

Unit Testing on Android

Thursday, July 5, 12

Unit Testing in Eclipse

Run like any other app

Thursday, July 5, 12

Unit Testing in Eclipse

View tests which fail

And why

Thursday, July 5, 12

Creating Unit Tests in
Eclipse

Make an Android Test Project
Thursday, July 5, 12

Creating Unit Tests in
Eclipse

Name it after your project
(Yes, this means you need 2 git repositories)

Thursday, July 5, 12

Creating Unit Tests in
Eclipse

Choose the project to test
Thursday, July 5, 12

Creating Unit Tests in
Eclipse

Add a new JUnit Test Case
Thursday, July 5, 12

Creating Unit Tests in
Eclipse

Set the properties of the Test Case

Test Package

Test Class Name
Test Superclass

Class being tested

Thursday, July 5, 12

Aside: Test Case
Superclasses

• TestCase – JUnit default (not for Android classes)

• AndroidTestCase – Android default

• ActivityInstrumentationTestCase2<T> –
Test Activities in Android environment

• ActivityUnitTestCase<T> – Test Activities in
standalone environment (e.g. to test Intents)

• ServiceTestCase – Test Services

• ProviderTestCase2 – Test Content Providers

Thursday, July 5, 12

What’s with the <T>?

• <T> is used in “generic templates”

• T substituted with a class (e.g.
<MyActivity>)

• Used with classes to specify the type of
class being operated on

○ (e.g. ArrayList<String> is an ArrayList of
String objects)

Thursday, July 5, 12

Creating Unit Tests in
Eclipse

Select what functions you want to test (if any)
Thursday, July 5, 12

Creating Unit Tests in
Eclipse

Basic Unit Test created!
Thursday, July 5, 12

A Live Activity Unit Test!

Thursday, July 5, 12

References

• HttpURLConnection (Android APIs)
<http://developer.android.com/reference/java/net/HttpURLConnection.html>

• Simple HttpURLConnection example
<http://digiassn.blogspot.in/2008/10/java-simple-httpurlconnection-example.html>

• How do you GET/POST? See Tim Bray’s “HttpURLConnection’s Dark Secrets”
<http://www.tbray.org/ongoing/When/201x/2012/01/17/HttpURLConnection>

• JUnit Cookbook
<http://junit.sourceforge.net/doc/cookbook/cookbook.htm>

• Android Testing
<http://developer.android.com/tools/testing/index.html>

• Unit Testing Best Practices
<http://www.bobmccune.com/2006/12/09/unit-testing-best-practices/>

Thursday, July 5, 12

http://developer.android.com/reference/java/net/HttpURLConnection.html
http://developer.android.com/reference/java/net/HttpURLConnection.html
http://digiassn.blogspot.in/2008/10/java-simple-httpurlconnection-example.html
http://digiassn.blogspot.in/2008/10/java-simple-httpurlconnection-example.html
http://www.tbray.org/ongoing/When/201x/2012/01/17/HttpURLConnection
http://www.tbray.org/ongoing/When/201x/2012/01/17/HttpURLConnection
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://developer.android.com/tools/testing/index.html
http://developer.android.com/tools/testing/index.html
http://www.bobmccune.com/2006/12/09/unit-testing-best-practices/
http://www.bobmccune.com/2006/12/09/unit-testing-best-practices/

	12
	web_and_tests.pdf

