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Interacting with the Web
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How to Access Web 
Content

1. Give your app permission to access the web
2. Open a connection to a URL
3. Read data from the URL and store it 

somewhere
4. Display the data from the URL on your app
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Give your app permission 
to access the web

• Find AndroidManifest.xml file

• Navigate to the Permissions tab

• Select “Add → Uses Permission”

• Select android.permission.INTERNET 
from the drop-down menu
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Open a connection to a 
URL

• A URL is a type of URI

• Sample code:

URL myURL;
myURL = new URL("http://myWebsite.com");
HttpURLConnection conn =
  (HttpURLConnection) url.openConnection();
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Read data from the URL and store 
it somewhere

• Get data from the URL
InputStream in = conn.getInputStream();
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Read data from the URL and store 
it somewhere

• Get data from the URL

• Use a reader to convert the data into the format you 
want. Useful Java classes.
○ InputStreamReader

○ BufferedReader

○ StringBuffer

○ CharBuffer

InputStream in = conn.getInputStream();
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Read data from the URL and store 
it somewhere

• Sample code
(printing data out instead of storing)
BufferedReader in =
  new BufferedReader(
    new InputStreamReader(conn.getInputStream())); 
String inputLine;

while ((inputLine = in.readLine()) != null) {
    System.out.println(inputLine);
}
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Read data from the URL and store 
it somewhere

• May encounter methods that throw 
exceptions, such as:
○ MalformedURLException

(new URL() throws when the string isn’t a URL)

○ IOException
(getInputStream() throws on bad connection)

• Handle them gracefully
○ How should the app work without Internet?
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Display the data from the URL 
on your app

Access your stored data and display it using
whatever combination of layouts and widgets

that you choose!
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Unit Tests and JUnit

Thursday, July 5, 12



What are unit tests?

• Small pieces of code that test your code

○ Test the smallest testable piece (unit)

○ Tests interact with your main code
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Why unit test?

• Guarantee your code does what you say

• Uncover corner cases early on

○ Ensure graceful degradation (GPS unavailable?)

• Debug before you release

• Can help guide development

○ Test-driven development (write tests first)
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What goes into a unit test?

• Assertion – A test of a single property or value (e.g. assert 
that “1+1” gives “2”)

• Test Case – A set of assertions that test a single function 
or use case

• Test Suite – A collection of related Test Cases to run 
together

• Test Runner – Code that runs the Test Suites

• Mock Object – An object substituting for another (when 
the object itself is not being tested)
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Some Types of Assertions

• All can take an extra first argument String message to print 
out when the assertion fails

• org.junit.Assert.

○ assertEquals(expected, actual)

■ Test that expected and actual are equal (.equals())

○ assertTrue(condition)/assertFalse(condition)

■ Test that condition is true/false

○ fail()

■ Always fail

See also:  http://junit.sourceforge.net/javadoc/org/junit/Assert.html
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More Types of Assertions

• android.test.MoreAsserts.

○ assertMatchesRegex(expectedRegex, actual)

■ Test that actual matches regular expression expectedRegex
○ assertEmpty(iterable)

■ Test that iterable contains no objects
○ assertContentsInOrder(iterable, expected...)

assertContentsInAnyOrder(iterable, expected...)

■ Test that iterable contains exactly all of the remaining 
arguments in exact/any order and nothing else

See also: http://developer.android.com/reference/android/test/MoreAsserts.html
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Mock Objects

• Objects that implement an interface
(i.e. they look like the interface)

• But results of functions may be pre-defined
(i.e. behavior is deterministic)
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Mock Objects: Example

public interface ProxySettings {
    public abstract String fetchWithProxy(URL url);
}

public class Weather {
    public static String fetchCurrentWeather(
      String place, ProxySettings proxy) {
        /* ... */
        return proxy.fetchWithProxy(url);
    }
}

ProxySettings proxy = new DeviceProxySettings();
String s = Weather.fetchCurrentWeather("Mumbai", proxy);
Assert.assertEquals(s, "Rain");
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Mock Objects: Example

Problem: DeviceProxySettings is device-specific!
Also, if I don’t use a proxy, I can’t test!

Solution: Make a mock object (class: MockProxySettings)!
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Mock Objects: Example

public class MockProxySettings implements ProxySettings {
    public String fetchWithProxy(URL url) {
         /* Fetch without a proxy! */
    }
}

ProxySettings proxy = new MockProxySettings();
String s = Weather.fetchCurrentWeather("Mumbai", proxy);
Assert.assertEquals(s, "Rain");

NOTE: What MockProxySettings does isn’t important.
What we care about is that fetchCurrentWeather works
with a class that behaves like a ProxySettings interface.
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Unit Testing with JUnit
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Making a TestCase

public class Email {
    private String mSubject;  // And so on...

    public Email(String from, String subject, String body) {
        mSubject = subject;
        // And so on...
    }

    public String getSubject() {
        return mSubject;
    }
}
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Making a TestCase

public class EmailTestCase extends TestCase {
    public Email myEmail;

    protected void setUp() throws Exception {
        super.setUp();
        /* Set up the objects which will be tested. */
        myEmail = new Email("From", "Subject", "Body");
    }

    protected void tearDown() throws Exception {
        super.tearDown();
        /* Destroy the objects that were  tested. */
    }
}
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Adding Tests

public class EmailTestCase extends TestCase {
    public void testSubject() {
        /* Testing that getSubject() returns what we expect. */
        assertEquals(myEmail.getSubject(), "Subject");
    }
}

All tests start with test!

NOTE: TestCase extends [is a child class of] Assert, so 
assertEquals may be called without referring to Assert.
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Collecting Tests in a 
TestSuite

public class MyTestSuiteBuilder {
    public static Test suite() {
        /* Create a TestSuite and add each test. */
        TestSuite suite = new TestSuite();
        suite.addTest(new EmailTest("testSubject"));
        return suite;
    }
} or

    public static Test suite() {
        /* Create a TestSuite and add each test. */
        TestSuite suite = new TestSuite(EmailTest.class);
        return suite;
    }
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Unit Testing on Android
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Unit Testing on Android
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Unit Testing in Eclipse

Run like any other app
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Unit Testing in Eclipse

View tests which fail

And why
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Creating Unit Tests in 
Eclipse

Make an Android Test Project
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Creating Unit Tests in 
Eclipse

Name it after your project
(Yes, this means you need 2 git repositories)
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Creating Unit Tests in 
Eclipse

Choose the project to test
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Creating Unit Tests in 
Eclipse

Add a new JUnit Test Case
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Creating Unit Tests in 
Eclipse

Set the properties of the Test Case

Test Package

Test Class Name
Test Superclass

Class being tested
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Aside: Test Case 
Superclasses

• TestCase – JUnit default (not for Android classes)

• AndroidTestCase – Android default

• ActivityInstrumentationTestCase2<T> –
Test Activities in Android environment

• ActivityUnitTestCase<T> – Test Activities in 
standalone environment (e.g. to test Intents)

• ServiceTestCase – Test Services

• ProviderTestCase2 – Test Content Providers
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What’s with the <T>?

• <T> is used in “generic templates”

• T substituted with a class (e.g. 
<MyActivity>)

• Used with classes to specify the type of 
class being operated on

○ (e.g. ArrayList<String> is an ArrayList of 
String objects)
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Creating Unit Tests in 
Eclipse

Select what functions you want to test (if any)
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Creating Unit Tests in 
Eclipse

Basic Unit Test created!
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A Live Activity Unit Test!
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References

• HttpURLConnection (Android APIs)
<http://developer.android.com/reference/java/net/HttpURLConnection.html>

• Simple HttpURLConnection example
<http://digiassn.blogspot.in/2008/10/java-simple-httpurlconnection-example.html>

• How do you GET/POST?  See Tim Bray’s “HttpURLConnection’s Dark Secrets”
<http://www.tbray.org/ongoing/When/201x/2012/01/17/HttpURLConnection>

• JUnit Cookbook
<http://junit.sourceforge.net/doc/cookbook/cookbook.htm>

• Android Testing
<http://developer.android.com/tools/testing/index.html>

• Unit Testing Best Practices
<http://www.bobmccune.com/2006/12/09/unit-testing-best-practices/>
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