
South Africa 2013

Lecture 14: Intro to Django ModelLecture 14: Intro to Django, Model, 
Admin

http://aiti.mit.edu



Google App Engine

Your Django app

Android OS

Your Android app

The Big Picture



Course Roadmap

Mobile
Applications

Back-End

Django

Python

Regular 
expressions

Google App 
Engine

Google Datastore

Algorithms
Data Transfer

Front End

Mobile Web

HTML

CSS

Javascript/JQuery

Android Java



Development Tools

• Operating system

– Windows (Optimally Linux )

• Integrated Development Environment

– Eclipse (Pydev)

• Version Control

– git, GitHub



Web Application Framework

• A framework (a.k.a. code libraries) that provides 
functionality for common components in a website, web 
app, or web service.

• Eases coding for
– Working with forms
– Handling HTTP requests
– Templates for common HTML layouts
– URL mapping
– Database communication
– Session management
– Site security

• Allows you to focus on design and functionality rather than 
small details.



Model-View-Controller (MVC)

• A paradigm for organizing code often seen in web app 
frameworks

• Main idea is
1. Separate the storage and manipulation of data (the 

model) and the presentation of data (view)
2. Use the Controller to communicate between the model 

and view

• Advantages
– Easier to develop and test model and view independently
– Easier for others to understand

• Exact roles of model, view, and controller depend on 
who you ask!



Model-View-Controller (MVC)
(news site example)

Controller

View Model

• News stories and 
images in a database

• User comments

• Layout of stories 
on mobile phone or 
desktop browser

Send request for 
a story

Asks the model for 
the story and its 
user comments

Serves requested 
story



Google App Engine

• Google’s cloud computing platform to develop 
and host web applications

• Distributed data storage service (The 
Datastore)

• Free up to 500 MB of storage and 5 million 
page views

• Saves the hassle and initial costs of setting up 
your own server equipment and software

• Supports Java and Python



What is Django?

• Web application framework, written in 
Python

• Released 2005
• Began with World Online, that needed 

to rapidly develop applications for news 
sites.

• Named after gypsie jazz guitarist 
Django Reinhardt (1910-53)

• Follows the Model-View-Controller 
paradigm



Why Django?

• Fast and easy development of web 
applications
– Modular and re-useable.  Don’t Repeat Yourself 

(DRY) principle

– Hides database details

• Active development and wide community 
support

• Successful Django sites http://djangosites.org/

• Supported by Google App Engine

http://djangosites.org/


Setting up your Django DB

• We will be using sqllite 3 … it is bundled with 
Django, no installations required

• In your settings.py , modify 
Engine : django.db.backends.sqlite3
Name : C:\pyprojects\mysite\db 

• Run python manage.py syncdb to create db 
required by your imported libraries.

• More on 

https://docs.djangoproject.com/en/1.4/intro/tut
orial01/

2

https://docs.djangoproject.com/en/1.4/intro/tutorial01/
https://docs.djangoproject.com/en/1.4/intro/tutorial01/
https://docs.djangoproject.com/en/1.4/intro/tutorial01/


Creating a Django App within a 

Project  

• An app is a Web application that does 
something -- e.g., a Weblog system, a 
database of public records or a simple poll 
app. A project is a collection of 
configuration and apps for a particular 
Web site. A project can contain multiple 
apps. An app can be in multiple projects.

• Always add the app name to settings.py to 
inform it about the apps existence

3



What is a model?

• A class describing data in your application

• Basically, a class with attributes for each 

data field that you care about

• The schema for your data

4



Django models

• Avoid direct work with the database

• No need to handle database 

connections, timeouts, etc. Let Django do 

it for you. 

• Class that extends models.Model

5



Django fields

• All you do is define a field type

– Ex: active = models.BooleanField()

• Django handles the rest:

– Bit value in sql database

– Represented as a checkbox on a webpage

– Validation of values

6



Django Model Syntax

class Musician(models.Model): 

first_name = models.CharField(max_length=50) 

last_name = models.CharField(max_length=50) 

instrument = models.CharField(max_length=100)

def __unicode__():

return last_name+”, “+first_name

class Album(models.Model): 

artist = models.ForeignKey(Musician) 

name = models.CharField(max_length=100) 

release_date = models.DateField() 

num_stars = models.IntegerField()

def __unicode__():

return name

7



Django Model Syntax

• class Album(models.Model): artist = 
models.ForeignKey(Musician) name = 
models.CharField(max_length=100) 
release_date = models.DateField() 
num_stars = models.IntegerField()

8



Important Django field types

• BooleanField

– Checkbox

• CharField(max_length)

– Single-line textbox

• DateField

– Javascript calendar

• DateTimeField

– Javascript calendar, time picker

9



Important Django field types

• DecimalField(max_digits, decimal_places)

– Decimal numbers

• EmailField

– Charfield that validates email address

• FileField

– File upload, stores path in database

• FloatField

– Floating point numbers

10



Important Django field types

• ImageField ***Don’t use

– Stores images

• IntegerField

– Integer textbox

• PositiveIntegerField

– Integer textbos for positive integers

• TextField

– Multi-line textbox

11



Important Django Field types

• TimeField

– Time picker

• URLField

– Textbox for URLs

• Anything you create

12



Field options

• Null

• Blank

• Choices:

– List or tuple of 2-tuples to use as field choices

– Django will represent it with a drop-down 

instead of a textbox

• Default

• Help text

13



More field options

• Primary key

• unique

• Verbose field name

14



DateField and DateTimeField

options

• Auto_now

– Any time the object is saved, the field will be 

updated with the current time. 

• Auto_now_add

– The time will always be equal to the creation 

date of the object. 

15



Model Methods

• __unicode__():

– Equivilant of toString – used for auto-

generated admin pages

• Get_absolute_url()

– Used for deciding URLs that reference a 

specific object

16



Django Relationship Fields

• ForeignKey(foreign class)

– Many-to-one

• ManyToManyField(foreign class)

– Uses a temporary table to join tables together

• OneToOneField(foreign class)

– Enforces uniqueness

17



Rules of Django Models

1. When you update a model, ALWAYS RUN 

python manage.py syncdb

2. Keep code clean

3. Always create a __unicode__() method

4. Name your variables well

5. Don’t think too much about the database

18



Commands

• View sql for models in a webapp

python manage.py sql appname

• Create the tables in database

python manage.py syncdb

19



Add an App to Admin Interface

• Create admin.py in your appname

directory

from appname.models import Tablename

from django.contrib import admin

admin.site.register(Tablenames)

20



Django Admin

• Used for inputting, editing, and deleting 

data from your application

• Saves you from manually creating admin 

forms

• Automatically generated based on your 

models

• Customizable through admin.py

2



Most important rule

• Djangoadmin
• Not Django user

3



Django Admin Nevers

• Never:

– Give normal users access to django admin

– Give anybody access that you don’t 100% 

trust

4



Blog example

• If you are the only blogger, you can use 
the admin interface

• If you provide a blogging service, you 
need to make a user interface

• You MUST create a separate interface for 
users to add comments

• You can use Django Admin to clean up 
comments

5



Admin pages

• Home (All Models that are registered)

– List (all objects of that Model)

• Details (all attributes of that object)

Ex:

• Home

• Blogs

• Blog post

6



Default admin

class Book(models.Model):
title = models.CharField(max_length=100) 
authors = models.ManyToManyField(Author) 
publisher = models.ForeignKey(Publisher) 
publication_date = models.DateField() 
def __unicode__(self): 

return self.title

admin.site.register(Book)

7



Extended Admin

class Book(models.Model):
title = models.CharField(max_length=100) 
authors = models.ManyToManyField(Author) 
publisher = models.ForeignKey(Publisher) 
publication_date = models.DateField() 
def __unicode__(self): 

return self.title

class BookAdmin(admin.ModelAdmin):
pass

Admin.site.register(Book, BookAdmin)

8



Extended Admin Example

Class BookAdmin(admin.ModelAdmin):

list_display = (‘title’,’publisher’,

’publication_date’)

list_filter = (‘publisher’,

’publication_date’)

search_fields = (‘title’, ‘publisher’)

ordering = (‘title’,’-publication_date’)

9



Extending your model

• Goal: display the first 10 letters of a book title

• Solution:

In your model, create a method:

def title_first_10(self):

return self.title[:10]

In the admin class, add:

list_display = (‘title_first_10’)

10



Inlines

• On the admin pages, you may want to see 

all the Book objects that relate to one 

Author. 

• Django Admin lets you put this all on one 

page with minimal effort

11



Inline Syntax

class BookInline(admin.TabularInline):

model = Book

class AuthorAdmin(admin.ModelAdmin):

inlines = [BookInline]

(You can use either TabularInline or 

StackedInline)

12



We want this:

13



And this:

14


	Binder1
	Django1
	lec_dj02.pdf

	lec_dj03.pdf

