i
Emitearm South Africa 2013

i

g M IT @ #:c:lerlatingl Infnrn:_atiun
u echnology Innovation
\/

Lecture 14: Intro to Django, Model,
Admin

HE
‘oi‘ Wir,
R s
2 %
. & %
I I I] | |
F 4 z
I I : b
5 v -
o, %
Hannese®

The Big Picture

Your Django app Your Android app

Course Roadmap

Mobile B
Applications

Back-End —

Python

Regular
expressions

Data Transfer

Front End —

Googlg App Google Datastore
Engine

Algorithms

Mobile Web g

HTML

=1 Javascript/JQuery

e W

Development Tools

* Operating system
— Windows (Optimally Linux)

* Integrated Development Environment
— Eclipse (Pydev)

* Version Control
— git, GitHub

Web Application Framework

A framework (a.k.a. code libraries) that provides
functionality for common components in a website, web
app, or web service.

Eases coding for

— Working with forms

— Handling HTTP requests

— Templates for common HTML layouts

— URL mapping

— Database communication

— Session management

— Site security

Allows you to focus on design and functionality rather than
small details.

Model-View-Controller (MVC)

A paradigm for organizing code often seen in web app
frameworks

Main idea is
1. Separate the storage and manipulation of data (the
model) and the presentation of data (view)

2. Use the Controller to communicate between the model
and view

Advantages
— Easier to develop and test model and view independently
— Easier for others to understand

Exact roles of model, view, and controller depend on
who you ask!

Model-View-Controller (MVC)
(news site example)

Controller

Asks the model for
the story and its
user comments

Send request for
a story

1
Serves requested

* Layout of stories story * News stories and

on mobile phone or images in a database

desktop browser e User comments

Google App Engine

Google’s cloud computing platform to develop
and host web applications

Distributed data storage service (The
Datastore)

Free up to 500 MB of storage and 5 million
page views

Saves the hassle and initial costs of setting up
your own server equipment and software

Supports Java and Python

What is Django?

Web application framework, written in
Python

Released 2005

Began with World Online, that needed

to rapidly develop applications for news
sites.

Named after gypsie jazz guitarist
Django Reinhardt (1910-53)

Follows the Model-View-Controller
paradigm

Why Django?

Fast and easy development of web
applications

— Modular and re-useable. Don’t Repeat Yourself
(DRY) principle

— Hides database details

Active development and wide community
support

Successful Django sites http://djangosites.org/
Supported by Google App Engine

http://djangosites.org/

Setting up your Django DB

* We will be using sqllite 3 ... it is bundled with
Django, no installations required

* |n your settings.py , modify
Engine : django.db.backends.sqlite3
Name : C:\pyprojects\mysite\db

* Run python manage.py syncdb to create db
required by your imported libraries.

* More on

https://docs.djangoproject.com/en/1.4/intro/tut
orial0l1/

https://docs.djangoproject.com/en/1.4/intro/tutorial01/
https://docs.djangoproject.com/en/1.4/intro/tutorial01/
https://docs.djangoproject.com/en/1.4/intro/tutorial01/

* An app is a Web application that does
something -- e.dg., a Weblog system, a
database of public records or a simple poll
app. A project is a collection of
configuration and apps for a particular
Web site. A project can contain multiple
apps. An app can be in multiple projects.

* Always add the app name to settings.py to
iInform it about the apps existence

What is a model?

* A class describing data In your application

 Basically, a class with attributes for each
data field that you care about

* The schema for your data

Django models

* Avoid direct work with the database

* No need to handle database
connections, timeouts, etc. Let Django do
it for you.

* Class that extends models.Model

Django fields

» All you do Is define a field type
— EXx: active = models.BooleanField()

* Django handles the rest:
— Bit value In sgl database
— Represented as a checkbox on a webpage
— Validation of values

Django Model Syntax

class Musician(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
instrument = models.CharField(max_length=100)

def __unicode__():
return last_namet” , “+first_name

class Album(models.Model):
artist = models.ForeignKey(Musician)
name = models.CharField(max_length=100)
release_date = models.DateField()
num_stars = models.IntegerField()
def _ unicode__():
return name

Django Model Syntax

e class Album(models.Model): artist =
models.ForeignKey(Musician) name =
models.CharField(max_length=100)
release_date = models.DateField()
num_stars = models.IntegerField()

Important Django field types

 BooleanField
— Checkbox

» CharField(max_length)
— Single-line textbox

» DateField
— Javascript calendar

» DateTimeField
— Javascript calendar, time picker

Important Django field types

* DecimalField(max_digits, decimal places)
— Decimal numbers

 EmalilField
— Charfield that validates email address

* FileFielo
— File upload, stores path in database

 FloatField
— Floating point numbers

Important Django field types

* ImageField ***Don’t use
— Stores Images

* IntegerField
— Integer textbox

* PositivelntegerField
— Integer textbos for positive integers

« TextField
— Multi-line textbox

Important Django Field types

* TimeField
— Time picker
« URLField
— Textbox for URLs

* Anything you create

Field options

» Cholices:
— List or tuple of 2-tuples to use as field choices

— Django will represent it with a drop-down
iInstead of a textbox

« Default
* Help text

More field options

* Primary key
* unique
* Verbose field name

DateField and DateTimeField
options

* Auto_now

— Any time the object is saved, the field will be
updated with the current time.

* Auto_now_add

— The time will always be equal to the creation
date of the object.

Model Methods

* __unicode_():

— Equivilant of toString — used for auto-
generated admin pages

« Get_absolute url()

— Used for deciding URLSs that reference a
specific object

Django Relationship Fields

* ForeignKey(foreign class)
— Many-to-one
« ManyToManyField(foreign class)
— Uses a temporary table to join tables together

* OneToOneField(foreign class)
— Enforces uniqgueness

Rules of Django Models

1. When you update a model, ALWAYS RUN
python manage.py syncdb

2. Keep code clean

3. Always create a ___unicode () method

4. Name your variables well

5. Don’t think too much about the database

Commands

* View sqgl for models in a webapp
python manage.py sql appname

* Create the tables in database
python manage.py syncdb

Add an App to Admin Interface

» Create admin.py in your appname
directory

from appname.models import Tablename
from django.contrib import admin
admin.site.register(Tablenames)

Django Admin

» Used for inputting, editing, and deleting
data from your application

» Saves you from manually creating admin
forms

- Automatically generated based on your
models

« Customizable through admin.py

Most important rule

.admin

* Not Django user

Django Admin Nevers

— Glve normal users access to django admin

— Give anybody access that you don’'t 100%
trust

Blog example

* If you are the only blogger, you can use
the admin interface

* If you provide a blogging service, you
need to make a user interface

* You MUST create a separate interface for
users to add comments

* You can use Django Admin to clean up
comments

Admin pages

- Home (All Models that are registered)

— List (all objects of that Model)
* Details (all attributes of that object)

EX:

« Home
* Blogs
* Blog post

Default admin

class Book(models.Model):
title = models.CharField(max_length=100)

authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
publication_date = models.DateField()
def _ unicode_ (self):

return self.title

admin.site.register (Book)

Extended Admin

class Book(models.Model):
title = models.CharField(max_length=100)

authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
publication_date = models.DateField()

def __unicode_ (self):
return self.title

class BookAdmin(admin.ModelAdmin):
pass

Admin.site.register (Book, BookAdmin)

Extended Admin Example

Class BookAdmin(admin.ModelAdmin):
list_display = (‘title’ ,” publisher’ |,
' publication_date’)
list_filter = (‘publisher’
' publication_date’)
search_fields = (‘title’ , ‘publisher’)
ordering = (‘title’ ,” -publication_date)

Extending your model

» Goal: display the first 10 letters of a book title
 Solution:
In your model, create a method:
def title_first_10(self):
return self.title[:10]

In the admin class, add:
list _display = (‘title_first_10")

Inlines

* On the admin pages, you may want to see
all the Book objects that relate to one
Author.

* Django Admin lets you put this all on one
page with minimal effort

Inline Syntax

class Booklnline(admin.TabularInline):
model = Book

class AuthorAdmin(admin.ModelAdmin):
inlines = [BookInline]

(You can use either Tabularinline or
StackedInline)

We want this:

Django administration Welcome, austin. Change password [Log out

Home » Blog » Blogs

Select blog to change
Q, Search
) - By created
Action | j| Go | 0 of 1 selected Foe
] Title Created Updated Today
= Past 7 days
[] First Blog Post June 21, 2011, 9:42 p.m. June 21, 2011, 9:42 p.m. - -
This maonth
This year
1 blog

13

DJ ango administration Welcome, austin. Change password / Log out

Home » Blog » Blogs » First Blog Post

Change blog
Title: First Blog Post
Body: this is the body of the biog post!
Body Author Delete?

That blog sucked
That blog sucked austin |

seconded ;1kj ;1kj 1kjlkilkjlkjsd falskdjf alskdfj lasdkif alsdkif alkdsif laksjdf lajds flkas jdfik
Seconded ;Ikj ;1kj Ikjlkilkikjsd friskait alskdf lasdkjf alsdkif alkdsi laksjdf lajds flkas idfikaids fkals dflaj not austin [
sdflkaidsfka jsdlkf alkds! lskdif lakds(f laksd fakd flaksd if

14

	Binder1
	Django1
	lec_dj02.pdf

	lec_dj03.pdf

