

The Road to learn React

Robin Wieruch

This book is for sale at http://leanpub.com/the-road-to-learn-react

This version was published on 2017-05-11

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2017 Robin Wieruch

http://leanpub.com/the-road-to-learn-react
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Robin Wieruch by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought The Road to learn React by @rwieruch #ReactJs #JavaScript

The suggested hashtag for this book is #ReactJs #JavaScript.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#ReactJs #JavaScript

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20The%20Road%20to%20learn%20React%20by%20@rwieruch%20%23ReactJs%20%23JavaScript

Contents

Foreword . i

Testimonials . ii

Education for Children . iii

FAQ . iv

Change Log . vi

How to read it? . vii

What you can expect (so far…) . viii

Introduction to React . 1
Hi, my name is React. 2
Requirements . 4
node and npm . 5
Installation . 7
Zero-Configuration Setup . 8
Introduction to JSX . 11
ES6 const and let . 14
ReactDOM . 16
Hot Module Reloading . 17
Complex JavaScript in JSX . 19
ES6 Arrow Functions . 23
ES6 Classes . 25

Basics in React . 28
Internal Component State . 29
ES6 Object Initializer . 31
Unidirectional Data Flow . 33
Interactions with Forms and Events . 37
ES6 Destructuring . 44
Controlled Components . 46
Split Up Components . 48

CONTENTS

Composeable Components . 51
Reusable Components . 53
Component Declarations . 56
Styling Components . 59

Getting Real with an API . 66
Lifecycle Methods . 67
Fetching Data . 69
ES6 Spread Operators . 73
Conditional Rendering . 76
Client- or Server-side Search . 79
Paginated Fetch . 83
Client Cache . 87

Code Organization and Testing . 95
ES6 Modules: Import and Export . 96
Code Organization with ES6 Modules . 100
Component Interface with PropTypes . 105
Snapshot Tests with Jest . 109
Unit Tests with Enzyme . 114

Advanced React Components . 117
Ref a DOM Element . 118
Loading … . 122
Higher Order Components . 126
Advanced Sorting . 130

State Management in React and beyond . 144
Lifting State . 145
Revisited: setState() . 152
Taming the State . 157

Final Steps to Production . 159
Eject . 160
Deploy your App . 161

Outline . 162

Foreword

I love to teach, even though I am no expert. I learn every day and I have the fortune to have great
mentors. After all not everyone has the opportunity to learn from mentors and peers. The book is
my attempt to give something back. It might help people to get started and advance in React.

But why me? In the past I have written a large tutorial to implement a SoundCloud Client in React
+ Redux¹. I never expected the overwhelming reaction. I learned a lot during the process of writing.
But even more by getting your feedback. It was my first attempt to teach people in programming.

It also taught me to do better. I realized the SoundCloud tutorial is suited for advanced developers.
It uses several tools to bootstrap your application and dives quickly into Redux. Still it helped a lot
of people to get started. In my opinion it is a great tutorial to get a bigger picture of React + Redux.
I use every free minute to improve the material, but it is time consuming.

In the Road to learn React I want to offer a foundation before you start to dive into the broader React
ecosystem. It has less tooling and less external state management, but a lot of information around
React. It explains general concepts, patterns and best practices.

You will learn to build your own Hacker News application. It covers real world features like
pagination, client-side caching and interactions like searching and sorting. Additionally you will
transition from JavaScript ES5 to JavaScript ES6 on the way. In conclusion, the book should give
you a solid foundation in React before you dive into more advanced topics like Redux. I hope this
book captures my enthusiasm for React and JavaScript and helps you to get started.

¹https://www.robinwieruch.de/the-soundcloud-client-in-react-redux

i

https://www.robinwieruch.de/the-soundcloud-client-in-react-redux
https://www.robinwieruch.de/the-soundcloud-client-in-react-redux
https://www.robinwieruch.de/the-soundcloud-client-in-react-redux

Testimonials

• Muhammad Kashif²: “The Road to Learn React is a unique book that I recommend to any
student or professional interested in learning react basics to advanced level. It is packed with
insightful tips and techniques that are hard to find elsewhere, and remarkably thorough in its
use of examples and references to sample problems, i have 17 years of experience in web and
desktop app development, and before reading this book i was having trouble in learning react,
but this book works like magic.”

• Nicholas Hunt-Walker, Instructor of Python at a Seattle Coding School³: “This is one of
the most well-written & informative coding books I’ve ever worked through. A solid React &
ES6 introduction.”

• A Rookie Developer: “I just finished the book as a rookie developer, thanks for working on
this. It was easy to follow and I feel confident in starting a new app from scratch in the coming
days. The book was much better than official React.js tutorial that I tried earlier (and couldn’t
complete due to lack of detail). The exercises at the end of each section were very rewarding.”

• Student: “The best book to start learning ReactJS. The project moves along with the concepts
being learnt which helps to grasp the subject. I have found ‘Code and learn’ as best way to
master programming and this book exactly does that.”

• Thomas Lockney⁴: “Pretty solid introduction to React that doesn’t try to be comprehensive.
I just wanted a taste to understand what it was about and this book gave me exactly that. I
didn’t follow all the little footnotes to learn about the new ES6 features I’ve missed (“I wouldn’t
say I’ve been missing it, Bob.”). But I’m sure for those of you who have fallen behind and are
diligent about following those, you can probably learn a lot more than just what the book
teaches.”

²https://twitter.com/appsdevpk
³https://github.com/nhuntwalker
⁴https://www.goodreads.com/review/show/1880673388

ii

https://twitter.com/appsdevpk
https://github.com/nhuntwalker
https://www.goodreads.com/review/show/1880673388
https://twitter.com/appsdevpk
https://github.com/nhuntwalker
https://www.goodreads.com/review/show/1880673388

Education for Children

The book is open source and should enable everyone to learn React. However, not everyone is
privileged to use open source resources, because not everyone is educated in the English language
in the first place. Even though the book is pay what you want, I want to use it to support projects
that teach children English in the developing world.

• 1. April to 18. April, 2017, Giving Back, By Learning React⁵

⁵https://www.robinwieruch.de/giving-back-by-learning-react/

iii

https://www.robinwieruch.de/giving-back-by-learning-react/
https://www.robinwieruch.de/giving-back-by-learning-react/

FAQ

Howdo I get updates? You can subscribe⁶ to my Newsletter or followme on Twitter⁷ to get updates.
It keeps me motivated to continue. Once you have a copy of the book, it will stay updated. But
you have to download the copy again when an update is announced. I will notify everyone by a
Newsletter⁸ and Twitter⁹.

Does it use the recent React version? Books are outdated pretty soon after their release. Since
this book is self-published, I can update it whenever I want. In conclusion, I update the resource
whenever there is a new React version.

Does it cover Redux? It doesn’t. The book should give you a solid foundation before you dive into
advanced topics. Still the implementation in the book will show you that you don’t need Redux
to build an application. After you have read the book, you should be able to implement a solid
application without Redux. You can pre-order my next book to support me: The Road to learn
Redux¹⁰.

Does it use JavaScript ES6? Yes. But don’t worry. You will be fine if you are familiar with JavaScript
ES5. All JavaScript ES6 features I describe on the journey to learn React will transition from ES5 to
ES6 in the book. Every feature along the way will be explained. The book does not only teach React,
but also all useful JavaScript ES6 features for React.

Will you add more chapters in the future? You can have a look at the Change Log chapter for
major updates that already happened. There will be unannounced improvements in between all the
time. In general it depends on the community whether I continue to work on the book. If there is
an acceptance for the book, I will deliver more chapters and improve the old material. I will keep
the content up to date with recent best practices, concepts and patterns. I would love to hear your
thoughts about possible chapters to improve and enrich the learning experience.

What are the reading formats? In addition to the .pdf, .epub, and .mobi formats, you can read it
in pure markdown on GitHub¹¹. In general, I recommend reading it on a suitable format, otherwise
the code snippets will have ugly line breaks.

⁶https://www.getrevue.co/profile/rwieruch
⁷https://twitter.com/rwieruch
⁸https://www.getrevue.co/profile/rwieruch
⁹https://twitter.com/rwieruch
¹⁰https://gumroad.com/products/uwiyI
¹¹https://github.com/rwieruch/the-road-to-learn-react

iv

https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://gumroad.com/products/uwiyI
https://gumroad.com/products/uwiyI
https://github.com/rwieruch/the-road-to-learn-react
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://gumroad.com/products/uwiyI
https://github.com/rwieruch/the-road-to-learn-react

FAQ v

Why is the book pay what you want? I have put a lot of effort into this and will do so in the
future. My desire is to reach as many people as possible. Everyone should be enabled to learn React.
Still you could pay - if you can afford it - because it already took me a lot of my time to write and
improve the book.

Can I help to improve it? Yes. You can have a direct impact with your thoughts and contributions
on GitHub¹². I don’t claim to be an expert nor to write in native English. I would appreciate your
help very much.

Can I support the project? Yes. Feel free to reach out or to support me. I invest a lot of my time
into open source tutorials and learning resources. You can have a look at my about me¹³ page.

Is there a call to action? Yes. I want you to take a moment to think about a person who would be a
good match to learn React. The person could have shown the interest already, could be in the middle
of learning React or might not yet be aware about wanting to learn React. Reach out to that person
and share the book. It would mean a lot to me. The book is intended to be given to others.

¹²https://github.com/rwieruch/the-road-to-learn-react
¹³https://www.robinwieruch.de/about/

https://github.com/rwieruch/the-road-to-learn-react
https://github.com/rwieruch/the-road-to-learn-react
https://www.robinwieruch.de/about/
https://github.com/rwieruch/the-road-to-learn-react
https://www.robinwieruch.de/about/

Change Log

10. January 2017:

• v2 Pull Request¹⁴
• even more beginner friendly
• 37% more content
• 30% improved content
• 13 improved and new chapters
• 140 pages of learning material
• + interactive course of the book on educative.io¹⁵

08. March 2017:

• v3 Pull Request¹⁶
• 20% more content
• 25% improved content
• 9 new chapters
• 170 pages of learning material

15. April 2017:

• upgrade to React 15.5.

¹⁴https://github.com/rwieruch/the-road-to-learn-react/pull/18
¹⁵https://www.educative.io/collection/5740745361195008/5676830073815040
¹⁶https://github.com/rwieruch/the-road-to-learn-react/pull/34

vi

https://github.com/rwieruch/the-road-to-learn-react/pull/18
https://www.educative.io/collection/5740745361195008/5676830073815040
https://github.com/rwieruch/the-road-to-learn-react/pull/34
https://github.com/rwieruch/the-road-to-learn-react/pull/18
https://www.educative.io/collection/5740745361195008/5676830073815040
https://github.com/rwieruch/the-road-to-learn-react/pull/34

How to read it?

The book is my attempt to teach React while you will write an application. It is a practical guide to
learn React and not a reference work about React. You will write a Hacker News application that
interacts with a real world API. Among several interesting topics, it covers state management in
React, caching and interactions (sorting and searching). On the way you will learn best practices
and patterns in React.

In addition, the book gives you a transition from JavaScript ES5 to JavaScript ES6. React embraces
a lot of JavaScript ES6 features and I want to show you how you can use them.

In general each chapter of the book will build up on the previous chapter. Each chapter will teach you
something new. Don’t rush through the book. You should internalize each step. You could apply your
own implementations and read more about the topic. After each chapter I give you some reading
material and exercises. If you really want to learn React, I highly recommend to read the extra
material and do some hands on exercises. After you have read a chapter, make yourself comfortable
with the learnings before you continue.

In the end you will have a complete React application in production. I am very keen to see your
results, so please text me when you have finished the book. The final chapter of the book will give
you a handful of options to continue your React journey. In general you will find a lot of React
related topics on my personal website¹⁷.

Since you are reading the book, I guess you are new to React. That’s perfect. In the end I hope to
get your feedback to improve the material to enable everyone to learn React. You can have a direct
impact on GitHub¹⁸ or text me on Twitter¹⁹.

¹⁷https://www.robinwieruch.de/
¹⁸https://github.com/rwieruch/the-road-to-learn-react
¹⁹https://twitter.com/rwieruch

vii

https://www.robinwieruch.de/
https://github.com/rwieruch/the-road-to-learn-react
https://twitter.com/rwieruch
https://www.robinwieruch.de/
https://github.com/rwieruch/the-road-to-learn-react
https://twitter.com/rwieruch

What you can expect (so far…)

• Hacker News App in React²⁰
• no complicated configurations
• create-react-app to bootstrap your application
• efficient lightweight code
• only React setState as state management (so far…)
• transition from JavaScript ES5 to ES6 along the way
• the React API with setState and lifecycle methods
• interaction with a real world API (Hacker News)
• advanced user interactions

– client-sided sorting
– client-sided filtering
– server-sided searching

• implementation of client-side caching
• higher order functions and higher order components
• snapshot test components with Jest
• unit test components with Enzyme
• neat libraries along the way
• exercises and more readings along the way
• internalize and reinforce your learnings
• deploy your application to production

²⁰https://intense-refuge-78753.herokuapp.com/

viii

https://intense-refuge-78753.herokuapp.com/
https://intense-refuge-78753.herokuapp.com/

Introduction to React

The chapter gives you an introduction to React. You may ask yourself: Why should I learn React in
the first place? The chapter might give you the answer to that question. Afterward you will dive
into the ecosystem by bootstrapping your first React application. Along the way you will get an
introduction to JSX and ReactDOM. Be prepared for your first React component.

1

Introduction to React 2

Hi, my name is React.

Why should you bother to learn React? In recent years single page applications (SPA²¹) have
become popular. Frameworks like Angular, Ember and Backbone helped JavaScript developers to
build modern web applications beyond the usage of jQuery. The list is not exhaustive. There exists
a wide range of SPA frameworks. When you consider the release dates, most of them are among the
first generation of SPAs: Angular 2010, Backbone 2010, Ember 2011.

The initial React release was 2013 by Facebook. React is not an SPA framework but a view library. It
is the V in the MVC²² (model view controller). It only enables you to render components as viewable
elements in a browser. Yet the whole ecosystem around React makes it possible to build single page
applications.

But why should you consider using React over the first generation of SPA frameworks? While the
first generation of frameworks tried to solve a lot of things at once, React only helps you to build
your view layer. It’s a library and not a framework. The idea behind it: Your view is a hierarchy of
composeable components.

In React you can focus on your view before you introduce more aspects to your application. Every
other aspect is another building block for your SPA. These building blocks are essential to build a
mature application. They come with two advantages.

First you can learn the building blocks step by step. You don’t have to worry about understanding
them altogether. It is different from a framework that gives you every building block from the start.
This book focuses on React as the first building block. More building blocks follow eventually.

Second all building blocks are interchangeable. It makes the ecosystem around React such an
innovative place. Multiple solutions are competing with each other. You can pick the most appealing
solution for you and your use case.

The first generation of SPA frameworks arrived at an enterprise level. They are more rigid. React
stays innovative and gets adopted by multiple tech thought leader companies like Airbnb, Netflix
and of course Facebook²³. All of them invest in the future of React and are content with React and
the ecosystem itself.

React is probably one of the best choices for building single page applications nowadays. It only
delivers the view layer, but the React ecosystem is a whole flexible and interchangeable framework.
React has a slim API, an amazing ecosystem and a great community. You can read about my
experiences why I moved from Angular to React²⁴. I highly recommend to have an understanding
why you would choose React over another framework or library. After all everyone is keen to
experience where React will lead us in 2017 and beyond.

²¹https://en.wikipedia.org/wiki/Single-page_application
²²https://de.wikipedia.org/wiki/Model_View_Controller
²³https://github.com/facebook/react/wiki/Sites-Using-React
²⁴https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/

https://en.wikipedia.org/wiki/Single-page_application
https://de.wikipedia.org/wiki/Model_View_Controller
https://github.com/facebook/react/wiki/Sites-Using-React
https://github.com/facebook/react/wiki/Sites-Using-React
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://en.wikipedia.org/wiki/Single-page_application
https://de.wikipedia.org/wiki/Model_View_Controller
https://github.com/facebook/react/wiki/Sites-Using-React
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/

Introduction to React 3

Exercises

• read about why I moved from Angular to React²⁵

²⁵https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/

https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/

Introduction to React 4

Requirements

Before you start to read the book, you should be familiar with HTML, CSS and JavaScript (ES5). The
book will teach JavaScript ES6 and beyond. If you are coming from a different SPA framework or
library, you should already be familiar with the basics. If you have just started in web development,
you should feel comfortable with HTML, CSS and JavaScript ES5 to learn React.

Every developer needs tools to build applications. You will need an editor (IDE) and terminal
(command line) tool. You can read my developer setup to organize your tools: Developer Setup²⁶. It
is adjusted for Mac users, but you can substitute most of the tools for other operating system.

The editor is used to organize and write your code. The terminal is used to execute commands. A
command can be to start your application, to run tests or to install other libraries for your project.

Last but not least you will need an installation of node and npm²⁷. Both are used to manage libraries
you will need along the way to learn React. You will install external node packages via npm (node
package manager). These node packages can be libraries or whole frameworks.

You can verify your versions of node and npm on the command line. If you don’t get any output in
the terminal, you need to install node and npm first. These are my versions:

Command Line

node --version

*v7.4.0

npm --version

*v4.0.5

²⁶https://www.robinwieruch.de/developer-setup/
²⁷https://nodejs.org/en/

https://www.robinwieruch.de/developer-setup/
https://nodejs.org/en/
https://www.robinwieruch.de/developer-setup/
https://nodejs.org/en/

Introduction to React 5

node and npm

This chapter gives you a little crash course in node and npm. It is not exhaustive, but you will get
all the necessary tools. If you are familiar with both of them, you can skip the chapter.

The node packagemanager (npm) allows you to install external node packages from the command
line. These packages can be a set of utility functions, libraries or whole frameworks. They are the
dependencies of your application. You can either install these packages to your global node package
folder or to your local project folder.

Global node packages are accessible from everywhere in the terminal and you have to install them
only once. You can install a global package by typing in your terminal:

Command Line

npm install -g <package>

The -g flag tells npm to install the package globally. Local packages are used in your application.
For instance, React as a library will be a local package which can be required in your application for
usage. You can install it via the terminal by typing:

Command Line

npm install <package>

In the case of React it would be:

Command Line

npm install react

The installed package will automatically appear in a folder called node_modules/. But be careful.
Whenever you install a local package you shouldn’t forget the neat --save flag:

Command Line

npm install --save <package>

The --save flag tells npm to store the package requirement in a file called package.json. The file can
be found in your project folder.

Not every project folder comes with a package.json file though. There is a npm command to initialize
a npm project and thus a package.json file. Only when you have that file, you can install new local
packages via npm.

Introduction to React 6

Command Line

npm init -y

The -y flag is a shortcut to initialize all the defaults in your package.json. If you don’t use it, you
have to decide how to configure the file.

One more word about the package.json. The file enables you to share your project with other
developers without sharing all the node packages. The file has all the references of node packages
used in your project. These packages are called dependencies. Everyone can copy your project
without the dependencies. The dependencies are references in the package.json. Someonewho copies
your project can install all packages by using npm install on the command line.

I want to cover one more npm command to prevent confusion:

Command Line

npm install --save-dev <package>

The --save-dev flag indicates that the node package is only used in the development environment.
It will not be used in production when you deploy your application on a server. What kind of node
package could that be? Imagine you want to test your application with the help of a node package.
You need to install that package via npm, but want to exclude it from your production environment.
There you don’t want to test your application anymore. It should be tested already and work out of
the box for users. That’s only one use case where you would want to use the --save-dev flag.

You will encounter more npm commands on your way. But these will be sufficient for now.

Exercises:

• setup a throw away npm project
– create a new folder with mkdir <folder_name>

– navigate into the folder with cd <folder_name>

– execute npm init -y

– install a local package like React with npm install --save react

– have a look into the package.json file and the node_modules/ folder
– find out how to uninstall the react node package

• read more about npm²⁸

²⁸https://docs.npmjs.com/

https://docs.npmjs.com/
https://docs.npmjs.com/

Introduction to React 7

Installation

There are multiple approaches to get started with a React application.

The first one is to use a CDN. That may sound more complicated than it is. A CDN is a content
delivery network²⁹. Several companies have CDNs that host files publicly for users. These files can
be libraries like React. After all a library can be only one JavaScript file. It can be hosted somewhere
and you can require it in your application.

How to use a CDN to get started in React? You can inline the <script> tag in your HTML that points
to a CDN url. To get started in React you need two files (libraries): react and react-dom.

Code Playground

<script src="https://unpkg.com/react@15/dist/react.js"></script>

<script src="https://unpkg.com/react-dom@15/dist/react-dom.js"></script>

But why should you use a CDN when you have npm to install node packages (libraries)?

When your application has a package.json file, you can install react and react-dom from the
command line. The requirement is that the folder is initialized as npm project with a package.json
file. You can install multiple node packages in one line with npm.

Command Line

npm install --save react react-dom

That approach is often used to add React to an existing application.

Unfortunately that’s not everything. You would have to deal with Babel³⁰ to make your application
aware of JSX - the React syntax - and JavaScript ES6. Babel transpiles your code that browsers can
interpret ES6 and JSX. Not all browsers are capable of interpreting the syntax. The setup includes a
lot of configuration and tooling. It can be overwhelming for React beginners to bother with all the
configuration.

Because of this reason, Facebook introduced create-react-app as a zero-configuration React solution.
The next chapter will show you how to setup your application.

Exercises:

• read more about React installations³¹

²⁹https://en.wikipedia.org/wiki/Content_delivery_network
³⁰http://babeljs.io/
³¹https://facebook.github.io/react/docs/installation.html

https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Content_delivery_network
http://babeljs.io/
https://facebook.github.io/react/docs/installation.html
https://en.wikipedia.org/wiki/Content_delivery_network
http://babeljs.io/
https://facebook.github.io/react/docs/installation.html

Introduction to React 8

Zero-Configuration Setup

In the Road to learn React you will use create-react-app³² to bootstrap your application. It’s an
opinionated yet zero-configuration starter kit for React introduced by Facebook in 2016. People
would recommend it to beginners by 96%³³. In create-react-app the tooling and configuration evolve
in the background while the focus is on the application implementation.

To get started, you will have to install the package to your global node packages. After that you
always have it available on the command line to bootstrap new React applications.

Command Line

npm install -g create-react-app

You can check the version of create-react-app to verify a successful installation on your command
line:

Command Line

create-react-app --version

It should give you an output about the version.

Now you can bootstrap your first React application. We call it hackernews, but you can choose a
different name. Afterward simply navigate into the folder:

Command Line

create-react-app hackernews

cd hackernews

Now you can open the application in your editor. The following folder structure should be presented
to you:

³²https://github.com/facebookincubator/create-react-app
³³https://twitter.com/dan_abramov/status/806985854099062785

https://github.com/facebookincubator/create-react-app
https://twitter.com/dan_abramov/status/806985854099062785
https://github.com/facebookincubator/create-react-app
https://twitter.com/dan_abramov/status/806985854099062785

Introduction to React 9

Folder Structure

hackernews/

README.md

node_modules/

package.json

.gitignore

public/

favicon.ico

index.html

src/

App.css

App.js

App.test.js

index.css

index.js

logo.svg

In the beginning everything you need is located in the src/ folder.

The main focus lies on the src/App.js file to implement React components. It will be used to
implement your application, but later you might want to split up your components into multiple
files.

Additionally you will find a src/App.test.js file for tests and a src/index.js as entry point to the React
world. You will get to know both files in a later chapter. In addition, there is a src/index.css and a
src/App.css file to style your application and components. They all come with default style when
you open them.

Next to to the src/ folder you will find the package.json file and node_modules/ folder to manage
your node packages. The create-react-app application is a npm project. You can use npm to install
and uninstall node packages to your project.

The create-react-app project comes with the following npm scripts for your command line:

Command Line

// Runs the application in http://localhost:3000

npm start

// Runs the tests

npm test

// Builds the application for production

npm run build

Introduction to React 10

The scripts are defined in your package.json too. Your boilerplate React application is bootstrapped
now.

Exercises:

• npm start your application and visit the page in your browser
• run the interactive npm test script
• make yourself familiar with the folder structure
• make yourself familiar with the content of the files
• read more about the scripts and create-react-app³⁴

³⁴https://github.com/facebookincubator/create-react-app

https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app

Introduction to React 11

Introduction to JSX

Now you will get to know JSX. It is the syntax in React. As I mentioned before, create-react-app has
already bootstrapped a boilerplate application. All files come with default implementations. Let’s
dive into the source code.

The only file you will touch in the beginning will be the src/App.js file.

src/App.js

import React, { Component } from 'react';

import logo from './logo.svg';

import './App.css';

class App extends Component {

render() {

return (

<div className="App">

<div className="App-header">

<h2>Welcome to React</h2>

</div>

<p className="App-intro">

To get started, edit <code>src/App.js</code> and save to reload.

</p>

</div>

);

}

}

export default App;

Don’t let yourself get confused by the import/export statements and class declaration. These features
are already JavaScript ES6. We will revisit those in a later chapter.

In the file you have an ES6 class component with the name App. It is a component declaration.
Basically after you have declared a component, you can use it as element everywhere in your
application. It will produce an instance of your component or in other words: the component gets
instantiated.

The element it returns is specified in the render() method. Elements are what components are
made of. It is useful to understand the differences between component, instance and element.

Pretty soon youwill see where the App component is used. Otherwise youwouldn’t see the rendered
output in the browser, would you? The App component is only the declaration, but not the usage.
You would instantiate the component somewhere in your JSX with <App />.

Introduction to React 12

The content in the render block looks pretty similar to HTML, but it’s JSX. JSX allows you to mix
HTML and JavaScript. It’s powerful yet confusing when you are used to plain HTML. That’s why
a good starting point is to use basic HTML in your JSX. Next you can start to embed JavaScript
expressions in between by using curly braces.

First let’s remove all the clutter in the file.

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

return (

<div className="App">

<h2>Welcome to React</h2>

</div>

);

}

}

export default App;

Now you only return HTML without JavaScript. Let’s make the “Welcome to React” a variable. A
variable can be used in your JSX.

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

var helloWorld = 'Welcome to React';

return (

<div className="App">

<h2>{helloWorld}</h2>

</div>

);

}

}

export default App;

Introduction to React 13

It should work when you start your application on the command line.

Additionally you might have noticed the className attribute. It reflects the standard class attribute
in HTML. Because of technical reasons, JSX had to replace a handful of internal HTML attributes.
You can find all of the supported HTML attributes in the React documentation³⁵. On your way to
learn React you will come across some more JSX attributes.

Exercises:

• define more variables and render them in your JSX
– use a complex object to represent an user with a first name and last name

• read more about JSX³⁶
• read more about React components, elements and instances³⁷

³⁵https://facebook.github.io/react/docs/dom-elements.html
³⁶https://facebook.github.io/react/docs/introducing-jsx.html
³⁷https://facebook.github.io/react/blog/2015/12/18/react-components-elements-and-instances.html

https://facebook.github.io/react/docs/dom-elements.html
https://facebook.github.io/react/docs/introducing-jsx.html
https://facebook.github.io/react/blog/2015/12/18/react-components-elements-and-instances.html
https://facebook.github.io/react/docs/dom-elements.html
https://facebook.github.io/react/docs/introducing-jsx.html
https://facebook.github.io/react/blog/2015/12/18/react-components-elements-and-instances.html

Introduction to React 14

ES6 const and let

I guess you noticed that we declared the variable helloWorld with var. JavaScript ES6 comes with
two more options to declare your variables: const and let. In JavaScript ES6 you will rarely find
var anymore. Let’s get some explanation for const and let:

A variable declared with const cannot be re-assigned or re-declared. It cannot get mutated (changed,
modified). You embrace immutable data structures by using it. Once the data structure is defined,
you cannot change it.

Code Playground

// not allowed

const helloWorld = 'Welcome to React';

helloWorld = 'Bye Bye React';

A variable declared with let can get mutated.

Code Playground

// allowed

let helloWorld = 'Welcome to React';

helloWorld = 'Bye Bye React';

You would use it when you would need to re-assign a variable.

However, you have to be careful with const. A variable declared with const cannot get modified.
But when the variable is an array or object, the value it holds can get altered. The value it holds is
not immutable.

Code Playground

// allowed

const helloWorld = {

text: 'Welcome to React'

};

helloWorld.text = 'Bye Bye React';

But when to use each declaration? There are different opinions about the usage. I suggest to use
const whenever you can. It indicates that you want to keep your data structure immutable even
though values in objects and arrays can get modified. If you want to modify your variable, you can
use let.

Immutability is embraced in React and its ecosystem. That’s why const should be your default
choice when you define a variable. Still, in complex objects the values within can get modified. Be
careful about this behavior.

In your application you should use const over var.

Introduction to React 15

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

const helloWorld = 'Welcome to React';

return (

<div className="App">

<h2>{helloWorld}</h2>

</div>

);

}

}

export default App;

Exercises:

• read more about ES6 const³⁸
• read more about ES6 let³⁹
• research more about immutable data structures

– why do they make sense in programming in general
– why are they used in React and its ecosystem

³⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
³⁹https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

Introduction to React 16

ReactDOM

Before you continue with the App component, you might want to see where it is used. It is located
in your entry point to the React world: the src/index.js file.

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

import './index.css';

ReactDOM.render(

<App />,

document.getElementById('root')

);

Basically ReactDOM.render() uses a DOM node in your HTML to replace it with your JSX.
That’s how you can easily integrate React in every foreign application. It is not forbidden to use
ReactDOM.render() multiple times across your application. You can use it at multiple places to
bootstrap simple JSX syntax, a React component, multiple React components or a whole application.

ReactDOM.render() expects two arguments.

The first argument is JSX that gets rendered. The second argument specifies the place where the
React application hooks into your HTML. It expects an element with an id='root'. You can open
your public/index.html file to find the id attribute.

In the implementation ReactDOM.render() already takes your App component. However, it would
be fine to pass simpler JSX as long as it is JSX. It doesn’t have to be an instantiation of a component.

Code Playground

ReactDOM.render(

<h1>Hello React World</h1>,

document.getElementById('root')

);

Exercises:

• open the public/index.html to see where the React applications hooks into your HTML
• read more about rendering elements in React⁴⁰

⁴⁰https://facebook.github.io/react/docs/rendering-elements.html

https://facebook.github.io/react/docs/rendering-elements.html
https://facebook.github.io/react/docs/rendering-elements.html

Introduction to React 17

Hot Module Reloading

There is one thing that you can do in the src/index.js file to improve your experience as a developer.

In create-react-app it is already an advantage that the browser automatically refreshes the page
when you change your source code. Try it by changing the helloWorld variable in your src/App.js
file. The browser should refresh the page. But you can do better.

HotModule Reloading (HMR) is a tool to reload your application in the browser. The browser doesn’t
perform a page refresh. You can easily activate it in create-react-app. In your src/index.js - your entry
point to React - you have to add one little configuration.

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

import './index.css';

ReactDOM.render(

<App />,

document.getElementById('root')

);

if (module.hot) {

module.hot.accept()

}

That’s it. Try again to change the hellowWorld variable in your src/App.js file. The browser shouldn’t
perform a page refresh, but the application reloads and shows the correct output.

HMR comes with multiple advantages.

Imagine you are debugging your code with console.log() statements. These statements will stay
in your developer console, even though you change your code, because the browser doesn’t refresh
the page anymore. That can be convenient for debugging purposes.

In a growing application a page refresh delays your productivity. You have to wait until the
page loads. A page reload can take several seconds in a large application. HMR takes away this
disadvantage.

The biggest benefit is that you can keep the application state with HMR. Imagine you have a dialog
in your application with multiple steps and you are at step 3. Basically it is a wizard. Without HMR
you would change the source code and your browser refreshes the page. You would have to open
the dialog again and would have to navigate from step 1 to step 3. With HMR your dialog stays open
at step 3. It keeps the application state even though the source code changes. The application itself
reloads, but not the page.

Introduction to React 18

Exercises:

• change your src/App.js source code a few times to see HMR in action
• watch the first 10 minutes of Live React: Hot Reloading with Time Travel⁴¹ by Dan Abramov

⁴¹https://www.youtube.com/watch?v=xsSnOQynTHs

https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs

Introduction to React 19

Complex JavaScript in JSX

Let’s get back to your App component. So far you rendered some primitive variables in your JSX.
Now you will start to render a list of items. The list will be artificial data in the beginning, but later
you will fetch the data from an external API. That will be far more exciting.

First you have to define the list of items.

src/App.js

import React, { Component } from 'react';

import './App.css';

const list = [

{

title: 'React',

url: 'https://facebook.github.io/react/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

{

title: 'Redux',

url: 'https://github.com/reactjs/redux',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

class App extends Component {

...

}

The artifical data will reflect the data we will fetch later on from the API. An item in the list has
a title, an url and a author. Additionally it comes with an identifier, points (which indicate how
popular an article is) and a count of comments.

Now you can use the built-in JavaScript map functionality in your JSX. It enables you to iterate
over your list of items to display them. As mentioned, you will use curly braces to encapsulate the
JavaScript expression in your JSX.

Introduction to React 20

src/App.js

class App extends Component {

render() {

return (

<div className="App">

{ list.map(function(item) {

return <div>{item.title}</div>;

})}

</div>

);

}

}

export default App;

That’s pretty powerful in JSX. Usually youmight have used map to convert one list of items to another
list of items. This time you use map to convert a list of items to HTML elements.

So far, only the title will be displayed for each item. But let’s display some more of the item
properties.

src/App.js

class App extends Component {

render() {

return (

<div className="App">

{ list.map(function(item) {

return (

<div>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

);

})}

</div>

Introduction to React 21

);

}

}

export default App;

You can see how the map function is simply inlined in your JSX. Each item property is displayed in
a tag. Moreover the url property of the item is used in the href attribute of the anchor tag.

React will do all the work for you and display each item. But you should add one helper for React
to embrace its full potential and improve its performance. You have to assign a key attribute to each
list element. Only that way React is able to identify added, changed and removed items when the
list changes. The artificial list items come with an identifier already.

src/App.js

{ list.map(function(item) {

return (

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

);

})}

You should make sure that the key attribute is a stable identifier. Don’t make the mistake of using
the item index in the array. The array index isn’t stable at all. For instance, when the list changes its
order, React will have a hard time identifying the items properly.

src/App.js

// don't do this

{ list.map(function(item, key) {

return (

<div key={key}>

...

</div>

);

})}

Introduction to React 22

You are displaying both list items now. You can start your app, open your browser and see both
items of the list displayed.

Exercises:

• read more about React lists and keys⁴²
• recap the standard built-in Array functionalities in JavaScript⁴³
• use more JavaScript expressions on your own in JSX

⁴²https://facebook.github.io/react/docs/lists-and-keys.html
⁴³https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

https://facebook.github.io/react/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://facebook.github.io/react/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Introduction to React 23

ES6 Arrow Functions

JavaScript ES6 introduced arrow functions. An arrow function expression is shorter than a function
expression.

Code Playground

// function expression

function () { ... }

// arrow function expression

() => { ... }

But you have to be aware of its functionalities. One of them is a different behavior with the this
object. A function expression always defines its own this object. Arrow function expressions still
have the this object of the enclosing context. Don’t get confused when using this in an arrow
function.

There is another valuable fact about arrow functions regarding the parenthesis. You can remove the
parenthesis when the function gets only one argument, but have to keep them when it gets multiple
arguments.

Code Playground

// allowed

item => { ... }

// allowed

(item) => { ... }

// not allowed

item, key => { ... }

// allowed

(item, key) => { ... }

However, let’s have a look at the map function. You can write it more concisely with an ES6 arrow
function.

Introduction to React 24

src/App.js

{ list.map(item => {

return (

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

);

})}

Additionally you can remove the block body of the ES6 arrow function. In a concise body an implicit
return is attached thus you can remove the return statement. That will happen more often in the
book, so be sure to understand the difference between a block body and a concise body.

src/App.js

{ list.map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

)}

Your JSX looks more concise and readable now. It omits the function statement, the curly braces and
the return statement.

Exercises:

• read more about ES6 arrow functions⁴⁴

⁴⁴https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Introduction to React 25

ES6 Classes

JavaScript ES6 introduced classes. A class is commonly used in object-oriented programming
languages. JavaScript was and is very flexible in its programming paradigms. You can do functional
programming and object-oriented programming side by side for their particular use cases.

Even though React embraces functional programming, for instance with immutable data structures,
classes are used to declare components. They are called ES6 class components. React mixes the good
parts of both programming paradigms.

Let’s consider the following Developer class to examine a JavaScript ES6 class without thinking
about a component.

Code Playground

class Developer {

constructor(firstname, lastname) {

this.firstname = firstname;

this.lastname = lastname;

}

getName() {

return this.firstname + ' ' + this.lastname;

}

}

A class has a constructor to make it instantiable. The constructor can take arguments to assign it to
the class instance. Additionally a class can define functions. Because the function is associated with
a class, it is called a method. Sometimes it is referenced as class method.

The Developer class is only the class declaration. You can create multiple instances of the class by
invoking it. It is similar to the ES6 class component, that has a declaration, but you have to use it
somewhere else to instantiate it.

Let’s see how you can instantiate the class and how you can use its methods.

Code Playground

const robin = new Developer('Robin', 'Wieruch');

console.log(robin.getName());

// output: Robin Wieruch

React uses JavaScript ES6 classes for ES6 class components. You already used one ES6 class
component.

Introduction to React 26

src/App.js

import React, { Component } from 'react';

...

class App extends Component {

render() {

...

}

}

The App class extends from Component. Basically you declare the App component, but it extends
from another component. What does extend mean? In object-oriented programming you have the
principle of inheritance. It is used to pass over functionalities from one class to another class.

The App class extends functionality from the Component class. To be more specific, it inherits
functionalities from the Component class. The Component is used to extend a basic ES6 class to
a ES6 component class. It has all the functionalities a component needs to have. One of these
functionalities, a method, you have already used: the render() method. But you will learn about
more functionalities.

The Component class encapsulates all the React functionalities that a developer doesn’t need to see.
It enables developers to use classes as components in React.

The methods a React Component exposes is the public interface. One of these methods has to be
overwritten, the others don’t need to be overwritten. You will learn about the latter ones when the
book arrives at lifecycle methods in a later chapter. The render() method has to be overwritten,
because it defines the output of a React Component.

Now you know the basics around JavaScript ES6 classes and how they are used in React to extend
them to components. As I said, you will learn more about the Component methods when the book
describes React lifecycle methods.

Exercises:

• read more about ES6 classes⁴⁵

⁴⁵https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes

Introduction to React 27

You have learned to bootstrap your own React application! Let’s recap the last chapters:

• React
– create-react-app bootstraps a React application
– JSX mixes up HTML and JavaScript to define React components
– components, instances and elements are different things
– ReactDOM.render() is an entry point for a React application
– built-in JavaScript functionalities can be used in JSX

* map can be used to render a list of items as HTML elements
• ES6

– variable declarations with const and let for particular use cases
– arrow functions can be used to shorten your function declarations
– classes are used to define components in React

It makes sense to take a break at this point. Internalize the learnings and apply them on your own.
You can experiment with the source code you have written so far.

You can find the source code in the official repository⁴⁶.

⁴⁶https://github.com/rwieruch/hackernews-client/tree/0c5a701170dcc72fe68bdd594df3a6522f58fbb3

https://github.com/rwieruch/hackernews-client/tree/0c5a701170dcc72fe68bdd594df3a6522f58fbb3
https://github.com/rwieruch/hackernews-client/tree/0c5a701170dcc72fe68bdd594df3a6522f58fbb3

Basics in React

The chapter will guide you through the basics of React. It covers state and interactions in
components, because static components are a bit dull, aren’t they? Additionally you will learn about
the different ways to declare a component and how to keep components composeable and reusable.
Be prepared to breathe life into your components.

28

Basics in React 29

Internal Component State

Internal component state allows you to store, modify and delete properties of your component. The
ES6 class component can use a constructor to initialize internal component state. The constructor is
called only once when the component initializes.

Let’s introduce a class constructor where you can set the initial internal component state.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list: list,

};

}

...

}

In your case the initial state is the artificial list of items. Note that you have to call super(props);
to call the constructor of the extended Component class. It’s mandatory, because it sets this.props
in your constructor. You should follow the best practice, otherwise you might run into bugs in the
future.

The state is bound to the class with the this object. You can access the state in your component. For
instance, it can be used in the render()method. Before you have mapped a static list of items. Now
you are about to use the list from your internal component state.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{ this.state.list.map(item =>

Basics in React 30

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

)}

</div>

);

}

}

The list is part of the component now. It resides in the internal component state. You could add
items, change items or remove items in and from your list. Every time you change your component
state, the render() method of your component will run again. That’s how you can simply change
your internal component state and be sure that the component re-renders.

But be careful. Don’t mutate the state directly. You have to use amethod called setState() tomodify
your state. You will get to know it in a following chapter.

Exercises:

• experiment with the internal state
– define more initial state in the constructor
– use the state in your render() method

• read more about the ES6 class constructor⁴⁷

⁴⁷https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor

Basics in React 31

ES6 Object Initializer

In JavaScript ES6 you can use a shorthand property syntax to initialize your objects more concise.
Imagine the following object initialization:

Code Playground

const name = 'Robin';

const user = {

name: name,

};

When the property name in your object can be the same as your variable name, you can do the
following:

Code Playground

const name = 'Robin';

const user = {

name,

};

In your application you can do the same. The list variable name and the state property name share
the same name.

Code Playground

// ES5

this.state = {

list: list,

};

// ES6

this.state = {

list,

};

Another neat helper are shorthand method names. In ES6 you can initialize methods in an object
more concise.

Basics in React 32

Code Playground

// ES5

var userService = {

getUserName: function (user) {

return user.firstname + ' ' + user.lastname;

},

};

// ES6

const userService = {

getUserName(user) {

return user.firstname + ' ' + user.lastname;

},

};

Last but not least, you are allowed to use computed property names in ES6.

Code Playground

// ES5

var user = {

name: 'Robin',

};

// ES6

const key = 'name';

const user = {

[key]: 'Robin',

};

Computed property names might make no sense yet. Why should you need it? In a future chapter
in the book you will come to a point where you can use it.

Exercises:

• experiment with ES6 object initializer
• read more about ES6 object initializer⁴⁸

⁴⁸https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer

Basics in React 33

Unidirectional Data Flow

Now you have some internal state in your App component. However, you have not manipulated
the internal state yet. The state is static and thus is the component. A good way to experience state
manipulation is to have some component interaction.

Let’s add a button for each item in the displayed list. The button says “Dismiss” and will remove the
item from the list. It could be useful eventually when you only want to keep a list of unread items.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{ this.state.list.map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

As you can see the onDismiss()method in the onClick function gets enclosed by another function.
Only that way you can sneak in the objectID property. Otherwise you would have to define the
function outside. However, by using an ES6 arrow function you can inline it.

Basics in React 34

Note that elements with multiple attributes get messy as one line at some point. That’s why the
button element is already used with multilines and indentation to keep it readable. But it is not
mandatory. It is only a code style recommendation.

Now you have to implement the onDismiss() functionality. It takes an item id to identify the item
to dismiss. The function is bound to the class and thus becomes a class method. You have to bind
class methods in the constructor. Additionally you have to define its functionality in your class.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onDismiss = this.onDismiss.bind(this);

}

onDismiss(id) {

...

}

render() {

...

}

}

Now you can define what happens inside of the class method. Since you want to remove the clicked
item from your list, you can do that with the built-in array filter functionality. The filter function
takes a function to evaluate each item in the list. If the evaluation for an item is true, the item stays
in the list. Otherwise it will get removed. Additionally the function returns a new list and doesn’t
mutate the old list. It keeps the immutable data structure.

Basics in React 35

src/App.js

onDismiss(id) {

function isNotId(item) {

return item.objectID !== id;

}

const updatedList = this.state.list.filter(isNotId);

}

You can do it more concise by using an ES6 arrow function again.

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedList = this.state.list.filter(isNotId);

}

You could even inline it - like we did in the onClick() handler of the button - but it might get less
readable.

src/App.js

onDismiss(id) {

const updatedList = this.state.list.filter(item => item.objectID !== id);

}

The list removes the clicked item now. However the state isn’t updated yet. Therefore you can finally
use the setState() class method to update the list in the internal component state.

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedList = this.state.list.filter(isNotId);

this.setState({ list: updatedList });

}

Basics in React 36

Now run again your application and try the “Dismiss” button. It should work. What you experience
now is the unidirectional data flow in React. You trigger an action in your view - with onClick()

- a function or class method modifies the internal component state and the render()method of the
component runs again to update the view.

Internal state update with unidirectional data flow

Exercises:

• read more about the state and lifecycle in React⁴⁹

⁴⁹https://facebook.github.io/react/docs/state-and-lifecycle.html

https://facebook.github.io/react/docs/state-and-lifecycle.html
https://facebook.github.io/react/docs/state-and-lifecycle.html

Basics in React 37

Interactions with Forms and Events

Let’s add another interaction to experience forms and events in React. The interaction is a search
functionality. The input of the search field should be used to filter your list based on the title property
of an item.

First you define your input field in your JSX.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input type="text" />

</form>

{ this.state.list.map(item =>

...

)}

</div>

);

}

}

In the following scenario you will type into the field and filter the list temporary by the search term.
To be able to filter the list, you need the value of the input field to update the state. But how do you
access the value? You can use synthetic events in React to access the event payload.

Let’s define an onChange() callback function for the input field.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

Basics in React 38

<input

type="text"

onChange={this.onSearchChange}

/>

</form>

...

</div>

);

}

}

The function is bound to the component and thus a class method again. You have to bind and define
the method.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

onSearchChange() {

...

}

...

}

The method argument gives you access to the synthetic React event. The event has the value of the
input field in its target object. Now you can manipulate the state for the search term:

Basics in React 39

src/App.js

class App extends Component {

...

onSearchChange(event) {

this.setState({ searchTerm: event.target.value });

}

...

}

Additionally you have to define the initial state for the searchTerm in the constructor.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

searchTerm: '',

};

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

...

}

Now you store the input value to your internal component state every time the value in the input
field changes. However, the list doesn’t update yet. You have to filter the list temporary based on
the searchTerm. That’s fairly simple. Before you map the list you can apply a filter on it. You have
already used the built-in JavaScript filter functionality.

Basics in React 40

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input

type="text"

onChange={this.onSearchChange}

/>

</form>

{ this.state.list.filter(...).map(item =>

...

)}

</div>

);

}

}

Let’s approach the filter function in a different way this time. We want to define the filter argument
- the function - outside of our ES6 class component. There we don’t have access to the state of the
component - thus we have no access to the searchTerm property to evaluate the filter condition. We
have to pass the searchTerm to the filter function and have to return a new function to evaluate the
condition. That’s called a higher order function.

Normally I wouldn’t mention higher order functions, but in a React book it makes totally sense. It
makes sense to know about higher order functions, because React deals with a concept called higher
order components. You will get to know the concept later in the book. Now again, let’s focus on the
filter functionality.

First you have to define the higher order function outside of your class.

Basics in React 41

src/App.js

function isSearched(searchTerm) {

return function(item) {

// some condition which returns true or false

}

}

class App extends Component {

...

}

The function takes the searchTerm and returns another function which takes an item. The returned
function will be used to filter the list based on the condition defined in the function.

Let’s define the condition.

src/App.js

function isSearched(searchTerm) {

return function(item) {

return !searchTerm ||

item.title.toLowerCase().includes(searchTerm.toLowerCase());

}

}

class App extends Component {

...

}

The condition says multiple things. You filter the list only when a searchTerm is set. When a
searchTerm is set, you match the incoming searchTerm pattern with the title of the item. You can
do that with the built-in includes JavaScript functionality. Only when the pattern matches, you
return true and the item stays in the list. But be careful with pattern matching: You shouldn’t forget
to lower case both strings. Otherwise there will be mismatches between a search term ‘redux’ and
an item title ‘Redux’.

One thing is left to mention: We cheated a bit by using the built-in includes JavaScript functionality.
It is already an ES6 feature. Howwould that look like in JavaScript ES5? Youwould use the indexOf()
function to get the index of the item in the list. When the item is in the list, indexOf() will return a
positive index.

Basics in React 42

Code Playground

// ES5

string.indexOf(pattern) !== -1

// ES6

string.includes(pattern)

Another neat refactoring can be done with an ES6 arrow function again. It makes the function more
concise:

Code Playground

// ES5

function isSearched(searchTerm) {

return function(item) {

return !searchTerm || item.title.toLowerCase().includes(searchTerm.toLowerCa\

se());

}

}

// ES6

const isSearched = (searchTerm) => (item) =>

!searchTerm || item.title.toLowerCase().includes(searchTerm.toLowerCase());

One could argue which function is more readable. Personally I prefer the second one. The React
ecosystem uses a lot of functional programming concepts. It happens often that you will use a
function which returns a function (higher order functions). In ES6 you can express these more
concise with arrow functions.

Last but not least, you have to use the defined isSearched() function to filter your list.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input

Basics in React 43

type="text"

onChange={this.onSearchChange}

/>

</form>

{ this.state.list.filter(isSearched(this.state.searchTerm)).map(item =>

...

)}

</div>

);

}

}

The search functionality should work now. Try it.

Exercises:

• read more about React events⁵⁰
• read more about higher order functions⁵¹

⁵⁰https://facebook.github.io/react/docs/handling-events.html
⁵¹https://en.wikipedia.org/wiki/Higher-order_function

https://facebook.github.io/react/docs/handling-events.html
https://en.wikipedia.org/wiki/Higher-order_function
https://facebook.github.io/react/docs/handling-events.html
https://en.wikipedia.org/wiki/Higher-order_function

Basics in React 44

ES6 Destructuring

There is a way in ES6 to access properties in objects and arrays easier. It’s called destructuring.
Compare the following snippet in JavaScript ES5 and ES6.

Code Playground

const user = {

firstname: 'Robin',

lastname: 'Wieruch',

};

// ES5

var firstname = user.firstname;

var lastname = user.lastname;

// ES6

const { firstname, lastname } = user;

console.log(firstname + ' ' + lastname);

// output: Robin Wieruch

While you have to add an extra line each time you want to access an object property in ES5, you
can do it in one line in ES6. Additionally you don’t have to have duplicated property names. A best
practice for readability is to use multilines when you destructure an object into multiple properties.

Code Playground

const {

firstname,

lastname

} = user;

The same goes for arrays. You can destructure them too, but keep it more readable with multilines.

Basics in React 45

Code Playground
const users = ['Robin', 'Andrew', 'Dan'];

const [

userOne,

userTwo,

userThree

] = users;

console.log(userOne, userTwo, userThree);

// output: Robin Andrew Dan

Perhaps you have noticed that the state in the App component can get destructured the same way.
You can shorten the filter and map line of code.

src/App.js
render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

...

{ list.filter(isSearched(searchTerm)).map(item =>

...

)}

</div>

);

You can do it the ES5 or ES6 way:

Code Playground
// ES5

var searchTerm = this.state.searchTerm;

var list = this.state.list;

// ES6

const { searchTerm, list } = this.state;

But since the book uses JavaScript ES6 most of the time, you should stick to ES6.

Exercises:

• read more about ES6 destructuring⁵²

⁵²https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Basics in React 46

Controlled Components

You already learned about the unidirectional data flow in React. The same law applies for the input
field, which updates the state that in turn filters the list. The state was changed, the render()method
runs again and uses the recent searchTerm state to apply the filter condition.

But didn’t we forget something in the input element? A HTML input tag comes with a value

attribute. The value attribute usually has the value that is shown in the input field - in our case
the searchTerm property. However, it seems like we don’t need that in React.

That’s wrong. Form elements such as <input>, <textarea> and <select> hold their own state. They
modify the value internally once someone changes it from the outside. In React that’s called an
uncontrolled component, because it handles its own state. In React you should make sure to make
those elements controlled components.

How should you do that? You only have to set the value attribute of the input field. The value is
already saved in the searchTerm state property.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<form>

<input

type="text"

value={searchTerm}

onChange={this.onSearchChange}

/>

</form>

...

</div>

);

}

}

That’s it. The unidirectional data flow cycle for the input field is self-contained now. The internal
component state is the single source of truth for the input field.

Basics in React 47

The whole internal state management and unidirectional data flow might be new to you. But once
you are used to it, it will be your natural flow to implement things in React. In general, React
brought a novel pattern with the unidirectional data flow to the world of single page applications.
It is adopted by several frameworks and libraries.

Exercises:

• read more about React forms⁵³

⁵³https://facebook.github.io/react/docs/forms.html

https://facebook.github.io/react/docs/forms.html
https://facebook.github.io/react/docs/forms.html

Basics in React 48

Split Up Components

You have one large App component now. It keeps growing and can be confusing eventually. You can
start to split it up into chunks - smaller components.

Let’s start to use a component for the search input and a component for the list of items.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search />

<Table />

</div>

);

}

}

You can pass those components properties which they can use themselves.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search

value={searchTerm}

onChange={this.onSearchChange}

/>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

Basics in React 49

/>

</div>

);

}

}

Now you can define the components next to your App component. Those components will be ES6
class components as well. They render the same elements like before.

The first one is the Search component.

src/App.js

class App extends Component {

...

}

class Search extends Component {

render() {

const { value, onChange } = this.props;

return (

<form>

<input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

}

The second one is the Table component.

Basics in React 50

src/App.js

...

class Table extends Component {

render() {

const { list, pattern, onDismiss } = this.props;

return (

<div>

{ list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

onClick={() => onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

Now you have three ES6 class components. Perhaps you have noticed the this.props object. The
props - short form for properties - have all the values you have passed to the components when
you used them in your App component. You could reuse these components somewhere else but pass
them different values. They are reusable.

Exercises:

• figure out which components you could split up
– but don’t do it now, otherwise you will run into conflicts in the next chapters

Basics in React 51

Composeable Components

There is one more little property which is accessible in the props object: the children prop. You can
use it to pass elements to your components from above - which are unknown to the component itself
- but make it possible to compose components into each other. Let’s see how this looks like when
you only pass a text (string) as a child to the Search component.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

}

}

Now the Search component can destructure the children property from props. Then it can specify
where the children should be displayed.

Basics in React 52

src/App.js

class Search extends Component {

render() {

const { value, onChange, children } = this.props;

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

}

The “Search” text should be visible next to your input field now.When you use the Search component
somewhere else, you can choose a different text if you like. After all it is not only text that you
can pass as children. You can pass an element and element trees (which can be encapsulated by
components again) as children. The children property makes it possible to weave components into
each other.

Exercises:

• read more about the composition model of React⁵⁴

⁵⁴https://facebook.github.io/react/docs/composition-vs-inheritance.html

https://facebook.github.io/react/docs/composition-vs-inheritance.html
https://facebook.github.io/react/docs/composition-vs-inheritance.html

Basics in React 53

Reusable Components

Reusable and composeable components empower you to come up with capable component hi-
erarchies. They are the foundation of your view layer. The last chapters mentioned often the
term reusability. You can reuse the Table and Search components already. Not to forget the App
component.

Let’s define one more reusable component - a Button component - which gets reused more often
eventually.

src/App.js

class Button extends Component {

render() {

const {

onClick,

className,

children,

} = this.props;

return (

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

);

}

}

It might seem redundant to declare such a component. You will use a Button instead of a button.
It only spares the type="button". Except for the type attribute you have to define everything else
when you want to use the Button component. But you have to think about the long term investment
here. Imagine you have several buttons in your application, but want to change an attribute, style or
behavior for the button. Without the component you would have to refactor every button. Instead
the Button component ensures to have only one single source of truth. One Button to refactor all
buttons at once.

Since you already have a button element, you can use the Button component instead. It omits the
type attribute.

Basics in React 54

src/App.js

class Table extends Component {

render() {

const { list, pattern, onDismiss } = this.props;

return (

<div>

{ list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<Button onClick={() => onDismiss(item.objectID)}>

Dismiss

</Button>

</div>

)}

</div>

);

}

}

The Button component expects a className property in the props. But we didn’t pass any className
when the Button was used. It should be more explicit in the Button component that the className
is optional.

You can use a JavaScript ES6 feature: the default parameter.

src/App.js

class Button extends Component {

render() {

const {

onClick,

className = '',

children,

} = this.props;

Basics in React 55

...

}

}

Now, whenever there is no className property, the value will be an empty string.

Exercises:

• read more about ES6 default parameters⁵⁵

⁵⁵https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters

Basics in React 56

Component Declarations

By now you have four ES6 class components. But you can do better. Let me introduce functional
stateless components as alternative for ES6 class components. Before you will refactor your
components, let’s introduce the different types of components.

• Functional Stateless Components: These components are functions which get an input and
return an output. The input is the props object. The output is a component instance. So far
it is quite similar to an ES6 class component. However, functional stateless components are
functions (functional) and they have no internal state (stateless). You cannot access the state
with this.state because there is no this object. Additionally they have no lifecycle methods.
You didn’t learn about lifecycle methods yet, but you already used two: constructor() and
render(). Keep this fact about functional stateless components in mind, when you arrive at
the lifecycle methods chapter later on.

• ES6 Class Components: You already used this type of component declaration. In the class
definition they extend from the React component. The extend hooks all the lifecycle methods
- available in the React component API - to the component. As I mentioned, you already used
two of them. Additionally you can store and manipulate state in ES6 class components.

• React.createClass: The component declaration was used in older versions of React and still
in JavaScript ES5 React applications. But Facebook declared it as deprecated⁵⁶ in favor of ES6.
They even added a deprecation warning in version 15.5⁵⁷. You will not use it in the book.

But when to use functional stateless components over ES6 class components? A rule of thumb
is to use functional stateless components when you don’t need internal component state or
component lifecycle methods. Usually you start to implement your components as functional
stateless components. Once you need access to the state or lifecycle methods, you have to refactor
it to an ES6 class component.

Let’s get back to your application. The App component uses internal state. That’s why it has to stay
as an ES6 class component. But the other three of your ES6 class components are stateless without
lifecycle methods. Let’s refactor together the Search component to a stateless functional component.
The Table and Button component refactoring will remain as your exercise.

⁵⁶https://facebook.github.io/react/blog/2015/03/10/react-v0.13.html
⁵⁷https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html

https://facebook.github.io/react/blog/2015/03/10/react-v0.13.html
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html
https://facebook.github.io/react/blog/2015/03/10/react-v0.13.html
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html

Basics in React 57

src/App.js

function Search(props) {

const { value, onChange, children } = props;

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

That’s basically it. But you can do more code wise in a functional stateless component. You already
know the ES6 destructuring. The best practice is to use it in the function signature to destructure
the props.

src/App.js

function Search({ value, onChange, children }) {

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

But it can get better. You know already that ES6 arrow functions allow you to keep your functions
concise. You can remove the block body of the function. In a concise body an implicit return is
attached thus you can remove the return statement. Since your functional stateless component is a
function, you can keep it concise as well.

Basics in React 58

src/App.js

const Search = ({ value, onChange, children }) =>

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

The last step was especially useful to enforce only to have props as input and an element as output.
Nothing in between. Still, you could do something in between by using a block body in your ES6
arrow function.

Code Playground

const Search = ({ value, onChange, children }) => {

// do something

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

But you don’t need it for now. That’s why you can keep the previous version without the block body.

Now you have one lightweight functional stateless component. Once you would need access to its
internal component state or lifecycle methods, you would refactor it to an ES6 class component. In
addition you saw how JavaScript ES6 can be used in React components to make them more elegant.

Exercises:

• refactor the Table and Button component to stateless functional components
• read more about ES6 class components and functional stateless components⁵⁸

⁵⁸https://facebook.github.io/react/docs/components-and-props.html

https://facebook.github.io/react/docs/components-and-props.html
https://facebook.github.io/react/docs/components-and-props.html

Basics in React 59

Styling Components

Let’s add some basic styling to your application and components. You can reuse the src/App.css and
src/index.css files. I prepared some CSS to copy and paste, but feel free to use your own style.

src/index.css

body {

color: #222;

background: #f4f4f4;

font: 400 14px CoreSans, Arial,sans-serif;

}

a {

color: #222;

}

a:hover {

text-decoration: underline;

}

ul, li {

list-style: none;

padding: 0;

margin: 0;

}

input {

padding: 10px;

border-radius: 5px;

outline: none;

margin-right: 10px;

border: 1px solid #dddddd;

}

button {

padding: 10px;

border-radius: 5px;

border: 1px solid #dddddd;

background: transparent;

color: #808080;

cursor: pointer;

}

Basics in React 60

button:hover {

color: #222;

}

*:focus {

outline: none;

}

src/App.css

.page {

margin: 20px;

}

.interactions {

text-align: center;

}

.table {

margin: 20px 0;

}

.table-header {

display: flex;

line-height: 24px;

font-size: 16px;

padding: 0 10px;

justify-content: space-between;

}

.table-empty {

margin: 200px;

text-align: center;

font-size: 16px;

}

.table-row {

display: flex;

line-height: 24px;

white-space: nowrap;

margin: 10px 0;

Basics in React 61

padding: 10px;

background: #ffffff;

border: 1px solid #e3e3e3;

}

.table-header > span {

overflow: hidden;

text-overflow: ellipsis;

padding: 0 5px;

}

.table-row > span {

overflow: hidden;

text-overflow: ellipsis;

padding: 0 5px;

}

.button-inline {

border-width: 0;

background: transparent;

color: inherit;

text-align: inherit;

-webkit-font-smoothing: inherit;

padding: 0;

font-size: inherit;

cursor: pointer;

}

.button-active {

border-radius: 0;

border-bottom: 1px solid #38BB6C;

}

Now you can use the style in some of your components. Don’t forget to use React className instead
of class as HTML attribute.

First, apply it in your App ES6 class component.

Basics in React 62

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

</div>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

}

}

Second, apply it in your Table functional stateless component.

src/App.js

const Table = ({ list, pattern, onDismiss }) =>

<div className="table">

{ list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID} className="table-row">

{item.title}

{item.author}

{item.num_comments}

{item.points}

Basics in React 63

<Button

onClick={() => onDismiss(item.objectID)}

className="button-inline"

>

Dismiss

</Button>

</div>

)}

</div>

Now you have styled your application and components with basic CSS. It should look decent. As
you know, JSX mixes up HTML and JavaScript. One could argue to add CSS in the mix as well.
That’s called inline style. You can define JavaScript objects and pass them to the style attribute of
an element.

Let’s keep the Table column width flexible by using inline style.

src/App.js

const Table = ({ list, pattern, onDismiss }) =>

<div className="table">

{ list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID} className="table-row">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<Button

onClick={() => onDismiss(item.objectID)}

className="button-inline"

>

Dismiss

</Button>

Basics in React 64

</div>

)}

</div>

It is really inlined now. You could define the style objects outside of your elements to make it cleaner.

Code Playground

const largeColumn = {

width: '40%',

};

const midColumn = {

width: '30%',

};

const smallColumn = {

width: '10%',

};

After that you could use it in your columns: .

In general, you will find different opinions and solutions for style in React. You used pure CSS and
inline style now. It is sufficient to get started.

I don’t want to be opinionated here, but I want to leave you some more options. You can read about
them and apply them on your own. But if you are new to React, I would recommend to stick to pure
CSS and inline style for now.

• radium⁵⁹
• aphrodite⁶⁰
• styled-components⁶¹
• CSS Modules⁶²

⁵⁹https://github.com/FormidableLabs/radium
⁶⁰https://github.com/khan/aphrodite
⁶¹https://github.com/styled-components/styled-components
⁶²https://github.com/css-modules/css-modules

https://github.com/FormidableLabs/radium
https://github.com/khan/aphrodite
https://github.com/styled-components/styled-components
https://github.com/css-modules/css-modules
https://github.com/FormidableLabs/radium
https://github.com/khan/aphrodite
https://github.com/styled-components/styled-components
https://github.com/css-modules/css-modules

Basics in React 65

You have learned the basics to write your own React application! Let’s recap the last chapters:

• React
– use this.state and setState to manage your internal component state
– use forms and events in React to add interactions
– unidirectional data flow is an important concept in React
– compose components with children and reusable components
– usage and implementation of ES6 class components and functional stateless components
– approaches to style your components

• ES6
– arrow functions with block and concise bodies to shorten your function declarations
– functions that are bound to a class are class methods
– destructuring of objects and arrays
– default parameters

• General
– higher order functions

Again it makes sense to take a break. Internalize the learnings and apply them on your own. You
can experiment with the source code you have written so far. Additionally you can read more in the
official documentation⁶³.

You can find the source code in the official repository⁶⁴.

⁶³https://facebook.github.io/react/docs/installation.html
⁶⁴https://github.com/rwieruch/hackernews-client/tree/2705dcd1a2027c4a6ecb8132428b399785afdfa5

https://facebook.github.io/react/docs/installation.html
https://github.com/rwieruch/hackernews-client/tree/2705dcd1a2027c4a6ecb8132428b399785afdfa5
https://facebook.github.io/react/docs/installation.html
https://github.com/rwieruch/hackernews-client/tree/2705dcd1a2027c4a6ecb8132428b399785afdfa5

Getting Real with an API

Now it’s time to get real with an API, because it can get boring to deal with artificial data.

If you are not familiar with APIs, I encourage you to read my journey where I got to know APIs⁶⁵.

Do you know the Hacker News⁶⁶ platform? It’s a great news aggregator about tech topics. In this
book, you will use the Hacker News API to fetch trending stories from the platform. There is a basic⁶⁷
and search⁶⁸ API to get data from the platform. The latter one makes sense in your case to search
stories on Hacker News. You can visit the API specification to get a glimpse of the data structure.

⁶⁵https://www.robinwieruch.de/what-is-an-api-javascript/
⁶⁶https://news.ycombinator.com/
⁶⁷https://github.com/HackerNews/API
⁶⁸https://hn.algolia.com/api

66

https://www.robinwieruch.de/what-is-an-api-javascript/
https://news.ycombinator.com/
https://github.com/HackerNews/API
https://hn.algolia.com/api
https://www.robinwieruch.de/what-is-an-api-javascript/
https://news.ycombinator.com/
https://github.com/HackerNews/API
https://hn.algolia.com/api

Getting Real with an API 67

Lifecycle Methods

You will need the knowledge about React lifecycle methods before you can start to fetch data.
These methods are a hook into the lifecycle of a React component. They can be used in ES6 class
components, but not in functional stateless components.

Do you remember when a previous chapter taught you about JavaScript ES6 classes and how they
are used in React? Apart from the render() method, I mentioned several methods that can be
overwritten in a React ES6 class component. All of these are the lifecycle methods. Let’s dive into
them:

You already know two lifecycle methods in a ES6 class component: constructor() and render().

The constructor is only called when an instance of the component is created and inserted in the
DOM. The component gets instantiated. That process is called mounting of the component.

The render()method is called during the mount process too, but also when the component updates.
Each time when the state or the props of a component change, the render() method is called.

Now you know more about the two lifecycle methods and when they are called. You already used
them as well. But there are more of them.

The mounting of a component has two more lifecycle methods: componentWillMount() and
componentDidMount(). The constructor is called first, componentWillMount() gets called before the
render() method and componentDidMount() is called after the render() method.

Overall the mounting process has 4 lifecycle methods. They are invoked in the following order:

• constructor()
• componentWillMount()
• render()
• componentDidMount()

But what about the update lifecycle of a component that happens when the state or the props change?
Overall it has 5 lifecycle methods in the following order:

• componentWillReceiveProps()
• shouldComponentUpdate()
• componentWillUpdate()
• render()
• componentDidUpdate()

Last but not least there is the unmounting lifecycle. It has only one lifecycle method: componen-
tWillUnmount().

After all, you don’t need to know all of these lifecycle methods from the beginning. It can be
intimidating yet you will not use all of them - even in a mature React application. Still, it is good to
know that each lifecycle method can be used for specific use cases:

Getting Real with an API 68

• constructor(props) - It is called when the component gets initialized. You can set an initial
component state and bind useful class methods during that lifecycle method.

• componentWillMount() - It is called before the render() lifecycle method. That’s why it
could be used to set internal component state, because it will not trigger a second rendering
of the component. Generally it is recommend to use the constructor() to set the initial state.

• render() - The lifecycle method is mandatory and returns the elements as an output of the
component. The method should be pure and therefore shouldn’t modify the component state.
It gets an input as props and state and returns an element.

• componentDidMount() - It is called only once when the component mounted. That’s the
perfect time to do an asynchronous request to fetch data from an API. The fetched data would
get stored in the internal component state to display it in the render() lifecycle method.

• componentWillReceiveProps(nextProps) - The lifecycle method is called during an update
lifecycle. As input you get the next props. You can diff the next props with the previous props
(this.props) to apply a different behavior based on the diff. Additionally you can set state
based on the next props.

• shouldComponentUpdate(nextProps, nextState) - It is always called when the component
updates due to state or props changes. You will use it in mature React applications for
performance optimizations. Depending on a boolean that you return from this lifecycle
method, the component and all its children will render or will not render on an update
lifecycle. You can prevent the render lifecycle method of a component.

• componentWillUpdate(nextProps, nextState) - The lifecycle method is immediately in-
voked before the render() method. You already have the next props and next state at your
disposal. You can use the method as last opportunity to perform preparations before the render
method gets executed. Note that you cannot trigger setState() anymore. If you want to
compute state based on the next props, you have to use componentWillReceiveProps().

• componentDidUpdate(prevProps, prevState) - The lifecyclemethod is immediately invoked
after the render() method. You can use it as opportunity to perform DOM operations or to
perform further asynchronous requests.

• componentWillUnmount() - It is called before you destroy your component. You can use the
lifecycle method to perform any clean up tasks.

The constructor() and render() lifecycle methods are already used by you. These are the
commonly used lifecycle methods for ES6 class components. Actually the render() method is
required, otherwise you wouldn’t return a component instance.

Exercises:

• read more about lifecycle methods in React⁶⁹
• read more about the state related to lifecycle methods in React⁷⁰

⁶⁹https://facebook.github.io/react/docs/react-component.html
⁷⁰https://facebook.github.io/react/docs/state-and-lifecycle.html

https://facebook.github.io/react/docs/react-component.html
https://facebook.github.io/react/docs/state-and-lifecycle.html
https://facebook.github.io/react/docs/react-component.html
https://facebook.github.io/react/docs/state-and-lifecycle.html

Getting Real with an API 69

Fetching Data

Now you are prepared to fetch data from the Hacker News API. I mentioned one lifecycle method
that can be used to fetch data: componentDidMount(). You will use the native fetch API to perform
the request.

Before we can use it, let’s set up the url constants and default parameters to breakup the API request
into chunks.

src/App.js

import React, { Component } from 'react';

import './App.css';

const DEFAULT_QUERY = 'redux';

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

...

In ES6 JavaScript you can use template strings⁷¹ to concatenate strings. You will use it to concatenate
your url for the API endpoint.

Code Playground

// ES6

const url = `${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${DEFAULT_QUERY}`;

// ES5

var url = PATH_BASE + PATH_SEARCH + '?' + PARAM_SEARCH + DEFAULT_QUERY;

console.log(url);

// output: https://hn.algolia.com/api/v1/search?query=redux

That will keep your url composition flexible in the future.

But let’s get to the API request where you will use the url. The whole data fetch process will be
presented at once, but each step will get explained afterward.

⁷¹https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

Getting Real with an API 70

src/App.js

...

class App extends Component {

constructor(props) {

super(props);

this.state = {

result: null,

searchTerm: DEFAULT_QUERY,

};

this.setSearchTopstories = this.setSearchTopstories.bind(this);

this.fetchSearchTopstories = this.fetchSearchTopstories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

setSearchTopstories(result) {

this.setState({ result });

}

fetchSearchTopstories(searchTerm) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}`)

.then(response => response.json())

.then(result => this.setSearchTopstories(result));

}

componentDidMount() {

const { searchTerm } = this.state;

this.fetchSearchTopstories(searchTerm);

}

...

}

A lot of things happen in the code. I thought about it to break it into smaller pieces. Then again
it would be difficult to grasp the relations of each piece to each other. Let me explain each step in
detail.

Getting Real with an API 71

First, you can remove the artificial list of items, because you return a result from the Hacker News
API. The initial state of your component has an empty result and default search term. The same
default search term is used in the search field and in your first request.

Second, you use the componentDidMount() lifecycle method to fetch the data after the component
did mount. In the very first fetch the default search term from the component state is used. It will
fetch “redux” related stories, because that is the default parameter.

Third, the native fetch is used. The JavaScript ES6 template strings allow it to compose the url with
the searchTerm. The url is the argument for the native fetch API function. The response needs to get
transformed to json, that’s a mandatory step in a native fetch, and can finally be set in the internal
component state.

Last but not least, don’t forget to bind your new component methods.

Now you can use the fetched data instead of the artificial list of items. However, you have to be
careful again. The result is not only a list of data. It’s a complex object with meta information and
a list of hits (stories).⁷² You can output the internal state with console.log(this.state); in your
render() method to visualize it.

Let’s use the result to render it. But we will prevent to render anything - return null - when there
is no result. Once the request to the API succeeded, the result is saved to the state and the App
component will re-render with the updated state.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

if (!result) { return null; }

return (

<div className="page">

...

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

⁷²https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api
https://hn.algolia.com/api

Getting Real with an API 72

}

}

Let’s recap what happens during the component lifecycle. Your component gets initialized by the
constructor. After that it renders for the first time. But you prevent to display it, because the result
is empty. Then the componentDidMount() lifecycle method runs. In that method you fetch the
data from the Hacker News API asynchronously. Once the data arrives, it changes your internal
component state. After that the update lifecycle comes into play. The component runs the render()
method again, but this time with populated data in your internal component state. The component
and thus the Table component with its content gets re-rendered.

You used the native fetch API that is supported by most browsers to perform an asynchronous
request to an API. The create-react-app configuration makes sure that it is supported in every
browser. There are third party node packages that you can use to substitute the native fetch API:
superagent⁷³ and axios⁷⁴.

Back to your application: The list of hits should be visible now. But the “Dismiss” button is broken.
We will fix that in the next chapter.

Exercises:

• read more about ES6 template strings⁷⁵
• read more about the native fetch API⁷⁶
• experiment with the Hacker News API⁷⁷

⁷³https://github.com/visionmedia/superagent
⁷⁴https://github.com/mzabriskie/axios
⁷⁵https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
⁷⁶https://developer.mozilla.org/en/docs/Web/API/Fetch_API
⁷⁷https://hn.algolia.com/api

https://github.com/visionmedia/superagent
https://github.com/mzabriskie/axios
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://hn.algolia.com/api
https://github.com/visionmedia/superagent
https://github.com/mzabriskie/axios
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://hn.algolia.com/api

Getting Real with an API 73

ES6 Spread Operators

The “Dismiss” button doesn’t work because the onDismiss() method is not aware of the complex
result object. Let’s change that:

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

...

});

}

But what happens in setState() now? Unfortunately the result is a complex object. The list of hits
is only one of multiple properties in the object. However, only the list gets updated, when an item
gets removed in the result object, while the other properties stay the same.

One approach could be to mutate the hits in the result object. I will demonstrate it, but we won’t do
it that way.

Code Playground

this.state.result.hits = updatedHits;

React embraces functional programming. Thus you shouldn’t mutate an object (or mutate the state
directly). A better approach is to generate a new object based on information you have. Thereby
none of the objects get altered. You will keep the immutable data structures. You will always return
a new object and never alter an object.

Let’s do it in JavaScript ES5. Object.assign() takes as first argument a target object. All following
arguments are source objects. These objects are merged into the target object. The target object can
be an empty object. It embraces immutability, because no source object gets mutated. It would look
similar to the following:

Code Playground

const updatedHits = { hits: updatedHits };

const updatedResult = Object.assign({}, this.state.result, updatedHits);

Now let’s do it in the onDismiss() method:

Getting Real with an API 74

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

result: Object.assign({}, this.state.result, { hits: updatedHits })

});

}

That’s it in JavaScript ES5. There is a simpler solution in ES6 and future JavaScript releases. May I
introduce the spread operator to you? It only consists of three dots: ...When it is used, every value
from an array or object gets copied to another array or object.

Let’s examine the ES6 array spread operator even though you don’t need it yet.

Code Playground

const userList = ['Robin', 'Andrew', 'Dan'];

const additionalUser = 'Jordan';

const allUsers = [...userList, additionalUser];

console.log(allUsers);

// output: ['Robin', 'Andrew', 'Dan', 'Jordan']

The allUsers variable is a completely new array. The other variables userList and additionalUser
stay the same. You can even merge two arrays that way into a new array.

Code Playground

const oldUsers = ['Robin', 'Andrew'];

const newUsers = ['Dan', 'Jordan'];

const allUsers = [...oldUsers, ...newUsers];

console.log(allUsers);

// output: ['Robin', 'Andrew', 'Dan', 'Jordan']

Now let’s have a look at the object spread operator. It is not ES6! It is a proposal for a future ES
version⁷⁸ yet already used by the React community. That’s why create-react-app incorporated the
feature in the configuration.

Basically it is the same as the JavaScript ES6 array spread operator but with objects. It copies each
key value pair into a new object.

⁷⁸https://github.com/sebmarkbage/ecmascript-rest-spread

https://github.com/sebmarkbage/ecmascript-rest-spread
https://github.com/sebmarkbage/ecmascript-rest-spread
https://github.com/sebmarkbage/ecmascript-rest-spread

Getting Real with an API 75

Code Playground

const userNames = { firstname: 'Robin', lastname: 'Wieruch' };

const age = 28;

const user = { ...userNames, age };

console.log(user);

// output: { firstname: 'Robin', lastname: 'Wieruch', age: 28 }

Multiple objects can be spread like in the array spread example.

Code Playground

const userNames = { firstname: 'Robin', lastname: 'Wieruch' };

const userAge = { age: 28 };

const user = { ...userNames, ...userAge };

console.log(user);

// output: { firstname: 'Robin', lastname: 'Wieruch', age: 28 }

After all it can be used to replace ES5 Object.assign().

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

result: { ...this.state.result, hits: updatedHits }

});

}

The “Dismiss” button should work again.

Exercises:

• read more about Object.assign()⁷⁹
• read more about the ES6 array spread operator⁸⁰

– the object spread operator is briefly mentioned

⁷⁹https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
⁸⁰https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

Getting Real with an API 76

Conditional Rendering

The conditional rendering is introduced pretty early in React applications. It happens when you
want to make a decision to render either one or another element. Sometimes it means to render an
element or nothing. After all, a conditional rendering simplest usage can be expressed by an if-else
statement in JSX.

The result object in the internal component state is null in the beginning. So far, the App component
returned no elements when the result hasn’t arrived from the API. That’s already a conditional
rendering, because you return earlier from the render() lifecycle method for a certain condition.
The App component either renders nothing or its elements.

But let’s go one step further. It makes more sense to wrap the Table component, which is the only
component that depends on the result, in an independent conditional rendering. Everything else
should be displayed, even though there is no result yet. You can simply use a ternary expression
in your JSX.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

</div>

{ result

? <Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

: null

}

</div>

Getting Real with an API 77

);

}

}

That’s your second option to express a conditional rendering. A third option is the logical && operator.
In JavaScript a true && 'Hello World' always evaluates to ‘Hello World’. A false && 'Hello

World' always evaluates to false.

Code Playground

const result = true && 'Hello World';

console.log(result);

// output: Hello World

const result = false && 'Hello World';

console.log(result);

// output: false

In React you can make use of that behavior. If the condition is true, the expression after the logical
&& operator will be the output. If the condition is false, React ignores and skips the expression. It is
applicable in the Table conditional rendering case, because it should return a Table or nothing.

src/App.js

{ result &&

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

}

These were a few approaches to use conditional rendering in React. You can read about more
alternatives on my website⁸¹ where I keep an exhaustive list of conditional renderings. Moreover
you will get to know their different use cases and when to apply them.

After all, you should be able to see the fetched data in your application. Everything except the Table
is displayed when the data fetching is pending. Once the request resolves the result, the Table is
displayed.

⁸¹https://www.robinwieruch.de/conditional-rendering-react/

https://www.robinwieruch.de/conditional-rendering-react/
https://www.robinwieruch.de/conditional-rendering-react/
https://www.robinwieruch.de/conditional-rendering-react/

Getting Real with an API 78

Exercises:

• read more about React conditional rendering⁸²
• read more about different ways for conditional renderings⁸³

⁸²https://facebook.github.io/react/docs/conditional-rendering.html
⁸³https://www.robinwieruch.de/conditional-rendering-react/

https://facebook.github.io/react/docs/conditional-rendering.html
https://www.robinwieruch.de/conditional-rendering-react/
https://facebook.github.io/react/docs/conditional-rendering.html
https://www.robinwieruch.de/conditional-rendering-react/

Getting Real with an API 79

Client- or Server-side Search

When you use the search input field now, you will filter the list. That’s happening on the client-side
though. Now you are going to use the Hacker News API to search on the server-side. Otherwise
you would deal only with the first API response which you got on componentDidMount() with the
default search term parameter.

You can define an onSubmit() method in your ES6 class component, which fetches results from the
Hacker News API. It will be the same fetch like in your componentDidMount() lifecycle method. But
it fetches it with the modified search term from the search field input.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

result: null,

searchTerm: DEFAULT_QUERY,

};

this.setSearchTopstories = this.setSearchTopstories.bind(this);

this.fetchSearchTopstories = this.fetchSearchTopstories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

...

onSearchSubmit() {

const { searchTerm } = this.state;

this.fetchSearchTopstories(searchTerm);

}

...

}

The Search component gets an additional button. The button has to explicitly trigger the search.
Otherwise you would fetch data every time from the Hacker News API when your input changes.

Getting Real with an API 80

As alternative you could debounce (delay) the onChange() function and spare the button, but it
would add more complexity at this time. Let’s keep it simple without a debounce.

First, pass the onSearchSubmit() method to your Search component.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

onSubmit={this.onSearchSubmit}

>

Search

</Search>

</div>

{ result &&

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

}

</div>

);

}

}

Second, introduce a button in your Search component. The button has the type="submit" and the
form uses its onSubmit() attribute to pass the onSubmit() method. You can reuse the children
property, but this time it will be used as the content of the button.

Getting Real with an API 81

src/App.js

const Search = ({

value,

onChange,

onSubmit,

children

}) =>

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

/>

<button type="submit">

{children}

</button>

</form>

In the Table you can remove the filter functionality, because there will be no client-side filter (search)
anymore. The result comes directly from the Hacker News API after you have clicked the “Search”
button.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

...

{ result &&

<Table

list={result.hits}

onDismiss={this.onDismiss}

/>

}

</div>

);

}

Getting Real with an API 82

}

...

const Table = ({ list, onDismiss }) =>

<div className="table">

{ list.map(item =>

...

)}

</div>

When you try to search now, you will notice that the browser reloads. That’s a native browser
behavior for a submit callback in a form. In React you will often come across the preventDefault()
event method to suppress the native browser behavior.

src/App.js

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.fetchSearchTopstories(searchTerm);

event.preventDefault();

}

Now you should be able to search different Hacker News stories. You interact with a real world API.
There should be no client-sided search anymore.

Exercises:

• read more about synthetic events in React⁸⁴

⁸⁴https://facebook.github.io/react/docs/events.html

https://facebook.github.io/react/docs/events.html
https://facebook.github.io/react/docs/events.html

Getting Real with an API 83

Paginated Fetch

Did you have a closer look at the returned data structure yet? The Hacker News API⁸⁵ returns more
than a list of hits. The page property, which is 0 in the first response, can be used to fetch more
paginated data. You only need to pass the next page with the same search term to the API.

Let’s extend the composeable API constants that it can deal with paginated data.

src/App.js

const DEFAULT_QUERY = 'redux';

const DEFAULT_PAGE = 0;

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

const PARAM_PAGE = 'page=';

Now you can use these constants to add the page parameter to your API request.

Code Playground

const url = `${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAG\

E}`;

console.log(url);

// output: https://hn.algolia.com/api/v1/search?query=redux&page=

The fetchSearchTopstories() method will take the page as second argument. The component-

DidMount() and onSearchSubmit() methods take the DEFAULT_PAGE for the initial API calls. They
should fetch the first page on the first request. Every additional fetch should fetch the next page.

src/App.js

class App extends Component {

...

componentDidMount() {

const { searchTerm } = this.state;

this.fetchSearchTopstories(searchTerm, DEFAULT_PAGE);

}

⁸⁵https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api

Getting Real with an API 84

fetchSearchTopstories(searchTerm, page) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}\

${page}`)

.then(response => response.json())

.then(result => this.setSearchTopstories(result));

}

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.fetchSearchTopstories(searchTerm, DEFAULT_PAGE);

event.preventDefault();

}

...

}

Now you can use the current page from the API response in fetchSearchTopstories(). You can use
this method in a button to fetch more stories on a button click. Let’s use the Button to fetch more
paginated data from the Hacker News API. You only need to define the onClick() function which
takes the current search term and the next page (current page + 1).

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

const page = (result && result.page) || 0;

return (

<div className="page">

<div className="interactions">

...

{ result &&

<Table

list={result.hits}

onDismiss={this.onDismiss}

/>

}

<div className="interactions">

Getting Real with an API 85

<Button onClick={() => this.fetchSearchTopstories(searchTerm, page + 1\

)}>

More

</Button>

</div>

</div>

);

}

}

You should make sure to default to page 0 when there is no result.

There is one step missing. You fetch the next page of data, but it will overwrite your previous page
of data. You want to concatenate the old and new data. Let’s adjust the functionality to add the new
data rather than to overwrite it.

src/App.js

setSearchTopstories(result) {

const { hits, page } = result;

const oldHits = page !== 0

? this.state.result.hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

result: { hits: updatedHits, page }

});

}

First, you get the hits and page from the result.

Second, you have to check if there are already old hits. When the page is 0, it is a new search
request from componentDidMount() or onSearchSubmit(). The hits are empty. But when you click
the “More” button to fetch paginated data the page isn’t 0. It is the next page. The old hits are already
stored in your state and thus can be used.

Third, you don’t want to overwrite the old hits. You can merge old and new hits from the recent
API request. The merge of both lists can be done with the JavaScript ES6 array spread operator.

Getting Real with an API 86

Fourth, you set the merged hits and page in the internal component state.

You can make one last adjustment. When you try the “More” button it only fetches a few list items.
The API url can be extended to fetch more list items with each request. Again you can add more
composeable path constants.

src/App.js

const DEFAULT_QUERY = 'redux';

const DEFAULT_PAGE = 0;

const DEFAULT_HPP = '100';

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

const PARAM_PAGE = 'page=';

const PARAM_HPP = 'hitsPerPage=';

Now you can use the constants to extend the API url.

src/App.js

fetchSearchTopstories(searchTerm, page) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${\

page}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(response => response.json())

.then(result => this.setSearchTopstories(result));

}

Afterward the request to the Hacker News API fetches more list items in one request than before.

Exercises:

• experiment with the Hacker News API parameters⁸⁶

⁸⁶https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api

Getting Real with an API 87

Client Cache

Each search submit makes a request to the Hacker News API. You might search for “redux”, followed
by “react” and eventually “redux” again. In total it makes 3 requests. But you searched for “redux”
twice and both times it took a whole asynchronous roundtrip to fetch the data. In a client-sided
cache you would store each result. When a request to the API is made, it checks if a result is already
there. If it is there, the cache is used. Otherwise an API request is made to fetch the data.

In order to have a client cache for each result, you have to store multiple results rather than one
result in your internal component state. The results object will be a map with the search term as
key and the result as value. Each result from the API will be saved by search term (key).

At the moment your result in the component state looks similar to the following:

Code Playground

result: {

hits: [...],

page: 2,

}

Imagine you have made two API requests. One for the search term “redux” and another one for
“react”. The results map should look like the following:

Code Playground

results: {

redux: {

hits: [...],

page: 2,

},

react: {

hits: [...],

page: 1,

},

...

}

Let’s implement a client-side cache with React setState(). First, rename the result object to
results in the initial component state. Second, define a temporary searchKey which is used to
store each result.

Getting Real with an API 88

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

};

...

}

...

}

The searchKey has to be set before each request is made. It reflects the searchTerm. You might
wonder: Why don’t we use the searchTerm in the first place? The searchTerm is a fluctuant variable,
because it gets changed every time you type into the Search input field. However, in the end you
will need a non fluctuant variable. It determines the recent submitted search term to the API and
can be used to retrieve the correct result from the map of results. It is a pointer to your current result
in the cache.

src/App.js

componentDidMount() {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

this.fetchSearchTopstories(searchTerm, DEFAULT_PAGE);

}

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

this.fetchSearchTopstories(searchTerm, DEFAULT_PAGE);

event.preventDefault();

}

Getting Real with an API 89

Now you have to adjust the functionality where the result is stored to the internal component state.
It should store each result by searchKey.

src/App.js

class App extends Component {

...

setSearchTopstories(result) {

const { hits, page } = result;

const { searchKey, results } = this.state;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

});

}

...

}

The searchKey will be used as key to save the updated hits and page in a results map.

First, you have to retrieve the searchKey from the component state. Remember that the searchKey
gets set on componentDidMount() and onSearchSubmit().

Second, the old hits have to get merged with the new hits as before. But this time the old hits get
retrieved from the results map with the searchKey as key.

Third, a new result can be set in the results map in the state. Let’s examine the results object in
setState().

Getting Real with an API 90

src/App.js

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

The bottom part makes sure to store the updated result by searchKey in the results map. The
value is an object with a hits and page property. The searchKey is the search term. You already
learned the [searchKey] syntax. It is an ES6 computed property name. It helps you to allocate
values dynamically in an object.

The upper part needs to object spread all other results by searchKey in the state. Otherwise you
would lose all results you stored before.

Now you store all results by search term. That’s the first step to enable your cache. In the next step
you can retrieve the result depending on the search term from your map of results.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

) || [];

return (

Getting Real with an API 91

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

onSubmit={this.onSearchSubmit}

>

Search

</Search>

</div>

<Table

list={list}

onDismiss={this.onDismiss}

/>

<div className="interactions">

<Button onClick={() => this.fetchSearchTopstories(searchKey, page + 1)\

}>

More

</Button>

</div>

</div>

);

}

}

Since you default to an empty list when there is no result by searchKey, you can spare the conditional
rendering for the Table component now. Additionally you will need to pass the searchKey rather
than the searchTerm to the “More” button. Otherwise your paginated fetch depends on the
searchTerm valuewhich is fluctuant. Moreovermake sure to keep the fluctuant searchTerm property
for the input field in the “Search” component.

The search functionality should work again. It stores all results from the Hacker News API.

Additionally the onDismiss() method needs to get improved. It still deals with the result object.
Now it has to deal with multiple results.

Getting Real with an API 92

src/App.js

onDismiss(id) {

const { searchKey, results } = this.state;

const { hits, page } = results[searchKey];

const isNotId = item => item.objectID !== id;

const updatedHits = hits.filter(isNotId);

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

});

}

The “Dismiss” button should work again.

However, nothing stops the application from sending an API request on each search submit. Even
though there might be already a result, there is no check that prevents the request. The cache
functionality is not complete yet. The last step would be to prevent the request when a result is
available in the cache.

src/App.js

class App extends Component {

constructor(props) {

...

this.needsToSearchTopstories = this.needsToSearchTopstories.bind(this);

this.setSearchTopstories = this.setSearchTopstories.bind(this);

this.fetchSearchTopstories = this.fetchSearchTopstories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

needsToSearchTopstories(searchTerm) {

return !this.state.results[searchTerm];

}

Getting Real with an API 93

...

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

if (this.needsToSearchTopstories(searchTerm)) {

this.fetchSearchTopstories(searchTerm, DEFAULT_PAGE);

}

event.preventDefault();

}

...

}

Now your client makes a request to the API only once although you search for a search term twice.
Even paginated data with several pages gets cached that way, because you always save the last page
for each result in the results map.

Getting Real with an API 94

You have learned to interact with an API in React! Let’s recap the last chapters:

• React
– ES6 class component lifecycle methods for different use cases
– componentDidMount() for API interactions
– conditional renderings
– synthetic events on forms

• ES6
– template strings to compose strings
– spread operator for immutable data structures
– computed property names

• General
– Hacker News API interaction
– native fetch browser API
– client- and server-side search
– pagination of data
– client-side caching

Again it makes sense to take a break. Internalize the learnings and apply them on your own. You
can experiment with the source code you have written so far.

You can find the source code in the official repository⁸⁷.

⁸⁷https://github.com/rwieruch/hackernews-client/tree/e60436a9d6c449e76a362aef44dd5667357b7994

https://github.com/rwieruch/hackernews-client/tree/e60436a9d6c449e76a362aef44dd5667357b7994
https://github.com/rwieruch/hackernews-client/tree/e60436a9d6c449e76a362aef44dd5667357b7994

Code Organization and Testing

The chapter will focus on important topics to keep your code maintainable in a scaling application.
You will learn about code organization to embrace best practices when structuring your folders and
files. Another aspect you will learn is testing, which is important to keep your code robust.

95

Code Organization and Testing 96

ES6 Modules: Import and Export

In JavaScript ES6 you can import and export functionalities from modules. These functionalities
can be functions, classes, components, constants etc. Basically everything that you can assign to a
variable. The modules can be single files or whole folders with one index file as entry point.

In the beginning of the book, after you have bootstrapped your application with create-react-
app, you already had several import and export statements across your initial files. Now it is the
appropriate time to explain these.

The import and export statements help you to share code across multiple files. Before there were
already several solutions for this in the JavaScript environment. It was a mess, because you would
want to follow one standardized way rather than having several approaches for the same thing. Now
it is a native behavior in JavaScript ES6.

Additionally these statements embrace code splitting. You distribute your code across multiple files
to keep it reusable and maintainable. The former is true because you can import the piece of code in
multiple files. The latter is true because you have one single source where you maintain the piece
of code.

Last but not least, it helps you to think about code encapsulation. Not every functionality needs
to get exported from a file. Some of these functionalities should only be used in the file where
they have been defined. The exports of a file are basically the public API to the file. Only the
exported functionalities are available to be reused somewhere else. It follows the best practice of
encapsulation.

But let’s get practical. How do these import and export statements work? The following examples
showcase the statements by sharing one or multiple variables across two files. In the end, the
approach can scale to multiple files and could share more than simple variables.

You can export one or multiple variables. It is called a named export.

Code Playground: file1.js

const firstname = 'robin';

const lastname = 'wieruch';

export { firstname, lastname };

And import them in another file with a relative path to the first file.

Code Organization and Testing 97

Code Playground: file2.js

import { firstname, lastname } from './file1.js';

console.log(firstname);

// output: robin

You can also import all exported variables from another file as one object.

Code Playground: file2.js

import * as person from './file1.js';

console.log(person.firstname);

// output: robin

Imports can have an alias. It can happen that you import functionalities frommultiple files that have
the same named export. That’s why you can use an alias.

Code Playground: file2.js

import { firstname as foo } from './file1.js';

console.log(foo);

// output: robin

Last but not least there exists the default statement. It can be used for a few use cases:

• to export and import a single functionality
• to highlight the main functionality of the exported API of a module
• to have a fallback import functionality

Code Organization and Testing 98

Code Playground: file1.js

const robin = {

firstname: 'robin',

lastname: 'wieruch',

};

export default robin;

Code Playground: file2.js

import developer from './file1.js';

console.log(developer);

// output: { firstname: 'robin', lastname: 'wieruch' }

The import name can differ from the exported default name. You can also use it in conjunction with
the named export and import statements.

Code Playground: file1.js

const firstname = 'robin';

const lastname = 'wieruch';

const person = {

firstname,

lastname,

};

export {

firstname,

lastname,

};

export default person;

Code Organization and Testing 99

Code Playground: file2.js

import developer, { firstname, lastname } from './file1.js';

console.log(developer);

// output: { firstname: 'robin', lastname: 'wieruch' }

console.log(firstname, lastname);

// output: robin wieruch

In named exports you can spare additional lines and export the variables directly.

Code Playground: file1.js

export const firstname = 'robin';

export const lastname = 'wieruch';

These are themain functionalities for ES6modules. They help you to organize your code, to maintain
your code and to design reusable module APIs. You can also export and import functionalities to
test them. You will do that in one of the following chapters.

Exercises:

• read more about ES6 import⁸⁸
• read more about ES6 export⁸⁹

⁸⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
⁸⁹https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export

Code Organization and Testing 100

Code Organization with ES6 Modules

You might wonder: Why didn’t we follow the best practices of code splitting for the src/App.js file?
In the file we already have multiple components which could be defined in their own files/folders
(modules). For the sake of learning React, it is practical to keep these things at one place. But
once your React application grows, you should consider to split up these components into multiple
modules. Only that way your application scales.

In the following I will propose several module structures you could apply. I would recommend to
apply them as an exercise at the end of the book. To keep the book itself simple, I will not perform
the code splitting and will continue the following chapters with the src/App.js file.

One possible module structure could be:

Folder Structure

src/

index.js

index.css

App.js

App.test.js

App.css

Button.js

Button.test.js

Button.css

Table.js

Table.test.js

Table.css

Search.js

Search.test.js

Search.css

It doesn’t look too promising. You can see a lot of naming duplications and only the file extension
differs. Another module structure could be:

Code Organization and Testing 101

Folder Structure

src/

index.js

index.css

App/

index.js

test.js

index.css

Button/

index.js

test.js

index.css

Table/

index.js

test.js

index.css

Search/

index.js

test.js

index.css

It looks cleaner than before. A component is defined by its component declaration in the JavasScript
file, but also by its style and tests.

Another step could be extracting the constant variables from the App component. These constants
were used to compose the Hacker News API url.

Folder Structure

src/

index.js

index.css

constants/

index.js

components/

App/

index.js

test.js

index..css

Button/

index.js

test.js

Code Organization and Testing 102

index..css

...

Naturally the modules would split up into src/constants/ and src/components/.

Now the src/constants/index.js file could look like the following:

Code Playground: src/constants/index.js

export const DEFAULT_QUERY = 'redux';

export const DEFAULT_PAGE = 0;

export const DEFAULT_HPP = '100';

export const PATH_BASE = 'https://hn.algolia.com/api/v1';

export const PATH_SEARCH = '/search';

export const PARAM_SEARCH = 'query=';

export const PARAM_PAGE = 'page=';

export const PARAM_HPP = 'hitsPerPage=';

The App/index.js file could import these variables in order to use them.

Code Playground: src/components/App/index.js

import {

DEFAULT_QUERY,

DEFAULT_PAGE,

DEFAULT_HPP,

PATH_BASE,

PATH_SEARCH,

PARAM_SEARCH,

PARAM_PAGE,

PARAM_HPP,

} from '../constants/index.js';

...

When you use the index.js naming convention, you can omit the filename from the relative path.

Code Organization and Testing 103

Code Playground: src/components/App/index.js

import {

DEFAULT_QUERY,

DEFAULT_PAGE,

DEFAULT_HPP,

PATH_BASE,

PATH_SEARCH,

PARAM_SEARCH,

PARAM_PAGE,

PARAM_HPP,

} from '../constants';

...

But what’s behind the index.js file naming? The convention was introduced in the node.js world.
The index file is the entry point to a module. It describes the public API to the module. External
modules are only allowed to use the index.js file to import shared code from the module. Consider
the following made up module structure to demonstrate it:

Folder Structure

src/

index.js

App/

index.js

Buttons/

index.js

SubmitButton.js

SaveButton.js

CancelButton.js

The Buttons/ folder has multiple button components defined in its distinct files. Each file can export
default the specific component making it available to Buttons/index.js. The Buttons/index.js file
imports all different button representations and exports them as public module API.

Code Organization and Testing 104

Code Playground: src/Buttons/index.js

import SubmitButton from './SubmitButton';

import SaveButton from './SaveButton';

import CancelButton from './CancelButton';

export {

SubmitButton,

SaveButton,

CancelButton,

};

Now the src/App/index.js can import the buttons from the public module API located in the index.js
file.

Code Playground: src/App/index.js

import {

SubmitButton,

SaveButton,

CancelButton

} from '../Buttons';

By going with this constraint, it would be a bad practice to reach into other files than the index.js
in the module. It would break the rules of encapsulation.

Code Playground: src/App/index.js

// bad practice, don't do it

import SubmitButton from '../Buttons/SubmitButton';

Now you know how you could refactor your source code in modules with the constraints of
encapsulation. As I said, for the sake of keeping the tutorial simple I will not apply these changes.
But you should do the refactoring at the end of the book.

Exercises:

• refactor your src/App.js file into multiple component modules when you finished the book

Code Organization and Testing 105

Component Interface with PropTypes

You may know TypeScript⁹⁰ or Flow⁹¹ to introduce a type interface to JavaScript. A typed language
is less error prone, because the code gets validated based on its program text. Editors and other
utilities can catch these errors before the program runs. It makes your program more robust.

React comes with a built-in type checker to prevent bugs. You can use PropTypes to describe your
component interface. All the props that get passed from a parent component to a child component
get validated based on the PropTypes interface assigned to the child component.

The chapter will show you how you can make all your components type safe with PropTypes. I will
omit the changes for the following chapters, because they add unnecessary code refactorings. But
you should keep and update them along the way to keep your components interface type safe.

Initially you can import PropTypes. You have to be aware of your React version, because in React
version 15.5 the import changed. Check your package.json for your React version.

If it is 15.5 or above, you have to install an independent package.

Command Line

npm install --save prop-types

If your version is 15.4 or below, you can use the already installed React package.

Now, depending on your version, you can import the PropTypes.

src/App.js

// React 15.5 and above

import PropTypes from 'prop-types';

// React 15.4 and below

import React, { Component, PropTypes } from 'react';

Let’s start to assign a props interface to the components:

⁹⁰https://www.typescriptlang.org/
⁹¹https://flowtype.org/

https://www.typescriptlang.org/
https://flowtype.org/
https://www.typescriptlang.org/
https://flowtype.org/

Code Organization and Testing 106

src/App.js

const Button = ({ onClick, className = '', children }) =>

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

Button.propTypes = {

onClick: PropTypes.func,

className: PropTypes.string,

children: PropTypes.node,

};

That’s it. You take every argument from the function signature and assign a PropType to it. The
basic PropTypes for primitives and complex objects are:

Code Playground

* PropTypes.array

* PropTypes.bool

* PropTypes.func

* PropTypes.number

* PropTypes.object

* PropTypes.string

Additionally you have two more PropTypes to define a renderable fragment (node), e.g. a string, and
a React element.

Code Playground

* PropTypes.node

* PropTypes.element

You already used the node PropType for the Button component. Overall there are more PropType
definitions that you can read up in the official React documentation.

At the moment all of the defined PropTypes for the Button are optional. The parameters can be null
or undefined. But for several props you want to enforce that they are defined. You can make it a
requirement that these props are passed to the component.

Code Organization and Testing 107

src/App.js

Button.propTypes = {

onClick: PropTypes.func.isRequired,

className: PropTypes.string,

children: PropTypes.node.isRequired,

};

The className is not required, because it can default to an empty string. Next you will define a
PropType interface for the Table component:

src/App.js

Table.propTypes = {

list: PropTypes.array.isRequired,

onDismiss: PropTypes.func.isRequired,

};

You can define the content of an array PropType more explicit:

src/App.js

Table.propTypes = {

list: PropTypes.arrayOf(

PropTypes.shape({

objectID: PropTypes.string.isRequired,

author: PropTypes.string,

url: PropTypes.string,

num_comments: PropTypes.number,

points: PropTypes.number,

})

).isRequired,

onDismiss: PropTypes.func.isRequired,

};

Only the objectID is required, because you know that some of your code depends on it. The other
properties are only displayed, thus they are not necessarily required. Moreover you cannot be sure
that the Hacker News API has always a defined property for each object in the array.

That’s it for PropTypes. But there is one more aspect. You can define default props in your
component. Let’s take again the Button component. The className property has an ES6 default
parameter in the component signature.

Code Organization and Testing 108

src/App.js

const Button = ({ onClick, className = '', children }) =>

...

You could replace it with the internal React default prop:

src/App.js

const Button = ({ onClick, className, children }) =>

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

Button.defaultProps = {

className: '',

};

Same as the ES6 default parameter, the default prop ensures that the property is set to a default value
when the parent component didn’t specify it. The PropType type check happens after the default
prop is evaluated.

Exercises:

• answer yourself the following question
– does the App component have a PropType interface?

• define the PropType interface for the Search component
• add and update the PropType interfaces when you add and update components in the next
chapters

• read more about React PropTypes⁹²

⁹²https://facebook.github.io/react/docs/typechecking-with-proptypes.html

https://facebook.github.io/react/docs/typechecking-with-proptypes.html
https://facebook.github.io/react/docs/typechecking-with-proptypes.html

Code Organization and Testing 109

Snapshot Tests with Jest

Jest⁹³ is a JavaScript testing framework. At Facebook it is used to validate the JavaScript code. In
the React community it is used for React components test coverage. Fortunately create-react-app
already comes with Jest.

Let’s start to test your first components. Before you can do that, you have to export the components
from your src/App.js file to test them in a different file.

src/App.js

...

class App extends Component {

...

}

...

export default App;

export {

Button,

Search,

Table,

};

In your App.test.js file you will find a first test. It verifies that the App component renders without
any errors.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<App />, div);

});

You can run it by using the interactive create-react-app scripts on the command line.

⁹³https://facebook.github.io/jest/

https://facebook.github.io/jest/
https://facebook.github.io/jest/

Code Organization and Testing 110

Command Line

npm run test

Now Jest enables you to write Snapshot tests. These tests make a snapshot of your rendered
component and run this snapshot against future snapshots. When a future snapshot changes you
will get notified during the test. You can either accept the snapshot change, because you changed
the component implementation on purpose, or deny the change and investigate for an error.

Jest stores the snapshots in a folder. Only that way it can show the diff to future snapshots.
Additionally the snapshots can be shared across teams.

You have to install an utility library before you can write your first Snapshot test.

Command Line

npm install --save-dev react-test-renderer

Now you can extend the App component test with your first Snapshot test.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import App from './App';

describe('App', () => {

it('renders', () => {

const div = document.createElement('div');

ReactDOM.render(<App />, div);

});

test('snapshots', () => {

const component = renderer.create(

<App />

);

let tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Code Organization and Testing 111

Run your tests again and see how the tests either succeed or fail. They should succeed. Once you
change the output of the render block in your App component, the Snapshot test should fail. Then
you can decide to update the snapshot or investigate in your App component.

Let’s add more tests for our independent components. First, the Search component:

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import App, { Search } from './App';

...

describe('Search', () => {

it('renders', () => {

const div = document.createElement('div');

ReactDOM.render(<Search>Search</Search>, div);

});

test('snapshots', () => {

const component = renderer.create(

<Search>Search</Search>

);

let tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Second, the Button component:

src/App.test.js

...

import App, { Search, Button } from './App';

...

describe('Button', () => {

it('renders', () => {

Code Organization and Testing 112

const div = document.createElement('div');

ReactDOM.render(<Button>Give Me More</Button>, div);

});

test('snapshots', () => {

const component = renderer.create(

<Button>Give Me More</Button>

);

let tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Last but not least, the Table component:

src/App.test.js

...

import App, { Search, Button, Table } from './App';

...

describe('Table', () => {

const props = {

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

};

it('renders', () => {

const div = document.createElement('div');

ReactDOM.render(<Table { ...props } />, div);

});

test('snapshots', () => {

const component = renderer.create(

<Table { ...props } />

);

let tree = component.toJSON();

expect(tree).toMatchSnapshot();

Code Organization and Testing 113

});

});

Snapshot tests usually stay pretty basic. You only want to cover that the component doesn’t change
its output. Once its changes the output, you have to decide if you accept the changes. Otherwise you
have to fix the component when the output is not the desired output.

Exercises:

• see how the Snapshot tests fail once you change your component implementation
– either accept or deny the snapshot change

• keep your snapshots tests up to date when the implementation changes in next chapters
• read more about Jest in React⁹⁴

⁹⁴https://facebook.github.io/jest/docs/tutorial-react.html

https://facebook.github.io/jest/docs/tutorial-react.html
https://facebook.github.io/jest/docs/tutorial-react.html

Code Organization and Testing 114

Unit Tests with Enzyme

Enzyme⁹⁵ is a testing utility by Airbnb to assert, manipulate and traverse your React components.
You can use it to conduct unit tests to complement your snapshot tests.

Let’s see how you can use enzyme. First you have to install it since it doesn’t come with create-
react-app.

Command Line

npm install --save-dev enzyme react-addons-test-utils

Now you can write your first unit test in the Table describe block. You will use shallow() to render
your component and assert that the Table has two items.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import { shallow } from 'enzyme';

import App, { Search, Button, Table } from './App';

describe('Table', () => {

const props = {

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

};

...

it('shows two items in list', () => {

const element = shallow(

<Table { ...props } />

);

expect(element.find('.table-row').length).toBe(2);

});

});

⁹⁵https://github.com/airbnb/enzyme

https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme

Code Organization and Testing 115

Shallow renders the component without child components. You can make the test very dedicated to
one component.

Enzyme has overall three rendering mechanisms in its API. You already know shallow(), but there
also exist mount() and render(). Both instantiate instances of the parent component and all child
components. Additionally mount() gives you more access to the component lifecycle methods. But
when to use which render mechanism? Here some rules of thumb:

• Always begin with a shallow test
• If componentDidMount() or componentDidUpdate() should be tested, use mount()
• If you want to test component lifecycle and children behavior, use mount()
• If you want to test children rendering with less overhead than mount() and you are not
interested in lifecycle methods, use render()

You could continue to unit test your components. But make sure to keep the tests simple and
maintainable. Otherwise you will have to refactor them once you change your components. That’s
why Facebook introduced Snapshot tests with Jest in the first place.

Exercises:

• keep your unit tests up to date during the following chapters
• read more about enzyme and its rendering API⁹⁶

⁹⁶https://github.com/airbnb/enzyme

https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme

Code Organization and Testing 116

You have learned how to organize your code and how to test it! Let’s recap the last chapters:

• React
– PropTypes let you define type checks for components
– Jest allows you to write snapshot tests for your components
– Enzyme allows you to write unit tests for your components

• ES6
– import and export statements help you to organize your code

• General
– code organization allows you to scale your application with best practices

You can find the source code in the official repository⁹⁷.

⁹⁷https://github.com/rwieruch/hackernews-client/tree/393ce5a350aa34b1c7ae056333f7bb7b0807caef

https://github.com/rwieruch/hackernews-client/tree/393ce5a350aa34b1c7ae056333f7bb7b0807caef
https://github.com/rwieruch/hackernews-client/tree/393ce5a350aa34b1c7ae056333f7bb7b0807caef

Advanced React Components

The chapter will focus on the implementation of advanced React components. You will learn about
higher order components and how to implement them. In addition you will dive into more advanced
topics in React and implement complex interactions.

117

Advanced React Components 118

Ref a DOM Element

Sometimes you need to interact with your DOM nodes in React. The ref attribute gives you access
to a node in your elements. Usually that is an anti pattern in React, because you should use its
declarative way of doing things and its unidirectional data flow. But there are certain cases where
you need access to the DOM node. The official documentation mentions three use cases:

• to use the DOM API (focus, media playback etc.)
• to invoke imperative DOM node animations
• to integrate with third-party library that needs the DOM node (e.g. D3.js⁹⁸)

Let’s do it by example with the Search component. When the application renders the first time, the
input field should be focused. That’s one use case where you would need access to the DOM API.
This chapter will show you how it works, but since it is not very useful for the application itself, we
will omit the changes after the chapter. You can keep it for your own application if you want.

In general, you can use the ref attribute in both functional stateless components and ES6 class
components. In the example of the focus use case, you will need a lifecycle method. That’s why I
will first show you the approach of using the ref attribute with an ES6 class component.

The initial step is to refactor the functional stateless component to an ES6 class component.

src/App.js

class Search extends Component {

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

/>

<button type="submit">

⁹⁸https://d3js.org/

https://d3js.org/
https://d3js.org/

Advanced React Components 119

{children}

</button>

</form>

);

}

}

The this object of an ES6 class component helps us to reference the DOM node with the ref

attribute.

src/App.js

class Search extends Component {

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={(node) => { this.input = node; }}

/>

<button type="submit">

{children}

</button>

</form>

);

}

}

Now you can focus the input field when the component mounted by using the this object and the
appropriate lifecycle method.

Advanced React Components 120

src/App.js

class Search extends Component {

componentDidMount() {

this.input.focus();

}

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={(node) => { this.input = node; }}

/>

<button type="submit">

{children}

</button>

</form>

);

}

}

The input field should be focused when the application is rendered. That’s it basically.

But how would you get access to the ref in a functional stateless component without the this

object? The following functional stateless component demonstrates it.

Advanced React Components 121

src/App.js

const Search = ({

value,

onChange,

onSubmit,

children

}) => {

let input;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={(node) => input = node}

/>

<button type="submit">

{children}

</button>

</form>

);

}

In the example of the focus use case it wouldn’t help you, because you have no lifecycle method to
trigger the focus by using the DOM API. But in the future you might come across other use cases
where it can make sense to use a functional stateless component with the ref attribute.

Exercises

• read more about the ref attribute in general in React⁹⁹
• read more about the usage of the ref attribute in React¹⁰⁰

⁹⁹https://facebook.github.io/react/docs/refs-and-the-dom.html
¹⁰⁰https://www.robinwieruch.de/react-ref-attribute-dom-node/

https://facebook.github.io/react/docs/refs-and-the-dom.html
https://www.robinwieruch.de/react-ref-attribute-dom-node/
https://facebook.github.io/react/docs/refs-and-the-dom.html
https://www.robinwieruch.de/react-ref-attribute-dom-node/

Advanced React Components 122

Loading …

Now let’s get back to the application. You might want to show a loading indicator when you submit
a search request to the Hacker News API. The request is asynchronous and you should show your
user some feedback that something is about to happen. Let’s define a reusable Loading component
in your src/App.js file.

src/App.js

const Loading = () =>

<div>Loading ...</div>

Now you will need a property to store the loading state. Based on the loading state you can decide
to show the Loading component later on.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

isLoading: false,

};

...

}

...

}

The initial value of that property is false. You don’t load anything before the App component is
mounted.

When you make the request, you set a loading state to true. Eventually the request will succeed and
you can set the loading state to false.

Advanced React Components 123

src/App.js

class App extends Component {

...

setSearchTopstories(result) {

const { hits, page } = result;

const { searchKey, results } = this.state;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

});

}

fetchSearchTopstories(searchTerm, page) {

this.setState({ isLoading: true });

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}\

${page}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(response => response.json())

.then(result => this.setSearchTopstories(result));

}

...

}

In the last step you will use the Loading component in your App. A conditional rendering based on

Advanced React Components 124

the loading state will decide whether you show a Loading component or Button component. The
latter one is your button to fetch more data.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

isLoading

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

) || [];

return (

<div className="page">

...

<div className="interactions">

{ isLoading

? <Loading />

: <Button

onClick={() => this.fetchSearchTopstories(searchKey, page + 1)}>

More

</Button>

}

</div>

</div>

);

Advanced React Components 125

}

}

Initially the Loading component will show up when you start your application, because you make
a request on componentDidMount(). There is no Table component, because the list is empty. When
the response returns from the Hacker News API, the result is shown, the loading state is set to false
and the Loading component disappears. The “More” button to fetch more data appears. Once you
fetch more data, the button will disappear. Instead the Loading component will show up.

Exercises:

• use a library like Font Awesome¹⁰¹ to show a loading icon instead of the “Loading …” text

¹⁰¹http://fontawesome.io/

http://fontawesome.io/
http://fontawesome.io/

Advanced React Components 126

Higher Order Components

Higher order components (HOC) are an advanced concept in React. HOCs are an equivalent to
higher order functions. They take any input - most of the time a component, but also optional
arguments - and return a component as output. The returned component is an enhanced version of
the input component and can be used in your JSX.

HOCs are used for different use cases. They can prepare properties, manage state or alter the
representation of a component. One use case could be to use a HOC as a helper for a conditional
rendering. Imagine you have a List component that renders a list of items or nothing, because the
list is empty or null. The HOC could shield away that the list would render nothing when there is
no list. On the other hand the plain List component doesn’t need to bother anymore about an non
existent list. It only cares about rendering the list.

Let’s do a simple HOC which takes a component as input and returns a component. You can place
it in your src/App.js file.

src/App.js

function withFoo(Component) {

return function(props) {

return <Component { ...props } />;

}

}

One neat convention is to prefix the naming of a HOC with with. Since you are using JavaScript
ES6, you can express the HOC more concise with an ES6 arrow function.

src/App.js

const withFoo = (Component) => (props) =>

<Component { ...props } />

In the example the input component would stay the same as the output component. Nothing
happens. It renders the same component instance and passes all of the props to the output component.
But that’s useless. Let’s enhance the output component. The output component should show the
Loading component, when the loading state is true, otherwise it should show the input component.
A conditional rendering is a great use case for a HOC.

Advanced React Components 127

src/App.js

const withLoading = (Component) => (props) =>

props.isLoading ? <Loading /> : <Component { ...props } />

Based on the loading property you can apply a conditional rendering. The function will return the
Loading component or the input component.

In general it can be very efficient to spread an object, like the props object, as input for a component.
See the difference in the following code snippet.

Code Playground

// before you would have to destructure the props before passing them

const { foo, bar } = props;

<SomeComponent foo={foo} bar={bar} />

// but you can use the object spread operator to pass all object properties

<SomeComponent { ...props } />

There is one little thing that you should avoid. You pass all the props including the isLoading

property, by spreading the object, into the input component. However, the input component doesn’t
care about the isLoading property. You can use the ES6 rest destructuring to avoid it.

src/App.js

const withLoading = (Component) => ({ isLoading, ...rest }) =>

isLoading ? <Loading /> : <Component { ...rest } />

It takes one property out of the object, but keeps the remaining object. It works with multiple
properties as well. You might have already read about it in the destructuring assignment¹⁰².

Now you can use the HOC in your JSX. A use case in the application could be to show either
the “More” button or the Loading component. The Loading component is already encapsulated
in the HOC, but an input component is missing. In the use case of showing a Button component
or a Loading component, the Button is the input component of the HOC. The enhanced output
component is a ButtonWithLoading component.

¹⁰²https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Advanced React Components 128

src/App.js

const Button = ({ onClick, className = '', children }) =>

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

const Loading = () =>

<div>Loading ...</div>

const withLoading = (Component) => ({ isLoading, ...rest }) =>

isLoading ? <Loading /> : <Component { ...rest } />

const ButtonWithLoading = withLoading(Button);

Everything is defined now. As a last step, you have to use the ButtonWithLoading component, which
receives the loading state as an additional property. While the HOC consumes the loading property,
all other props get passed to the Button component.

src/App.js

class App extends Component {

...

render() {

...

return (

<div className="page">

...

<div className="interactions">

<ButtonWithLoading

isLoading={isLoading}

onClick={() => this.fetchSearchTopstories(searchKey, page + 1)}>

More

</ButtonWithLoading>

</div>

</div>

);

Advanced React Components 129

}

}

When you run your tests again, you will notice that your snapshot test for the App component fails.
It should show the following diff on the command line.

Command Line

- <button

- className=""

- onClick={[Function]}

- type="button">

- More

- </button>

+ <div>

+ Loading ...

+ </div>

You can either fix the component now, when you think there is something wrong about it, or can
accept the new snapshot. Because you introduced the Loading component in this chapter, you can
accept the failing snapshot test with u on the command line in the interactive test.

Higher order components are an advanced technique in React. They have multiple purposes
like improved reusability of components, greater abstraction, composeability of components and
manipulations of props, state and view. Don’t worry if you don’t understand them immediately. It
takes time to get used to them.

I encourage you to read the gentle introduction to higher order components¹⁰³. It gives you another
approach to learn them, shows you an elegant way to use them the functional programming way
and solves specifically the problem of conditional rendering with higher order components.

Exercises:

• experiment with the HOC you have created
• think about a use case where another HOC would make sense

– implement the HOC, if there is a use case

¹⁰³https://www.robinwieruch.de/gentle-introduction-higher-order-components/

https://www.robinwieruch.de/gentle-introduction-higher-order-components/
https://www.robinwieruch.de/gentle-introduction-higher-order-components/

Advanced React Components 130

Advanced Sorting

You have already implemented a client- and server-side search interaction. Since you have a Table
component, it would make sense to enhance the Table with advanced interactions. What about
enabling sorting by the Table columns?

It would be possible to write your own sort function, but personally I prefer to use a utility library for
such cases. Lodash¹⁰⁴ is one of these utility libraries. Let’s install and use it for the sort functionality.

Command Line

npm install --save lodash

Now you can import the sort functionality of lodash in your src/App.js file.

src/App.js

import React, { Component } from 'react';

import { sortBy } from 'lodash';

import './App.css';

You have several columns in your Table. There are title, author, comments and points columns.
You can define sort functions where each function takes a list and returns a list of items sorted by
property. Additionally you will need one default sort function which doesn’t sort but only returns
the unsorted list.

src/App.js

...

const SORTS = {

NONE: list => list,

TITLE: list => sortBy(list, 'title'),

AUTHOR: list => sortBy(list, 'author'),

COMMENTS: list => sortBy(list, 'num_comments').reverse(),

POINTS: list => sortBy(list, 'points').reverse(),

};

class App extends Component {

...

}

...

¹⁰⁴https://lodash.com/

https://lodash.com/
https://lodash.com/

Advanced React Components 131

You can see that two of the sort functions return a reversed list. That’s because you want to see the
items with the highest comments and points rather than to see the items with the lowest.

The SORTS object allows you to reference any sort function now.

Again your App component is responsible for storing the state of the sort. The initial state will be
the initial default sort function, which doesn’t sort at all and returns the input list as output.

src/App.js

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

isLoading: false,

sortKey: 'NONE',

};

Once you choose a different sortKey, let’s say the AUTHOR key, you will sort the list with the
appropriate sort function.

Now you can define a new sort method in your App component that simply sets a sortKey to your
internal component state.

src/App.js

class App extends Component {

constructor(props) {

...

this.needsToSearchTopstories = this.needsToSearchTopstories.bind(this);

this.setSearchTopstories = this.setSearchTopstories.bind(this);

this.fetchSearchTopstories = this.fetchSearchTopstories.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

this.onSort = this.onSort.bind(this);

}

onSort(sortKey) {

this.setState({ sortKey });

}

Advanced React Components 132

...

}

The next step is to pass the method and sortKey to your Table component.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

isLoading,

sortKey

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

) || [];

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

onSubmit={this.onSearchSubmit}

>

Search

</Search>

Advanced React Components 133

</div>

<Table

list={list}

sortKey={sortKey}

onSort={this.onSort}

onDismiss={this.onDismiss}

/>

<div className="interactions">

<ButtonWithLoading

isLoading={isLoading}

onClick={() => this.fetchSearchTopstories(searchKey, page + 1)}>

More

</ButtonWithLoading>

</div>

</div>

);

}

}

The Table component is responsible for sorting the list. It takes one of the SORT functions by sortKey
and passes the list as input. Afterward it keeps mapping over the sorted list.

src/App.js

const Table = ({

list,

sortKey,

onSort,

onDismiss

}) =>

<div className="table">

{ SORTS[sortKey](list).map(item =>

<div key={item.objectID} className="table-row">

{item.title}

{item.author}

{item.num_comments}

Advanced React Components 134

{item.points}

<Button

onClick={() => onDismiss(item.objectID)}

className="button-inline"

>

Dismiss

</Button>

</div>

)}

</div>

In theory the list would get sorted by one of the functions. But the default sort is set to NONE. So far
no one executes the onSort() method to change the sortKey. Let’s extend the Table with a row of
headers that use Sort components in columns to sort each column.

src/App.js

const Table = ({

list,

sortKey,

onSort,

onDismiss

}) =>

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={onSort}

>

Title

</Sort>

<Sort

sortKey={'AUTHOR'}

onSort={onSort}

>

Author

</Sort>

Advanced React Components 135

<Sort

sortKey={'COMMENTS'}

onSort={onSort}

>

Comments

</Sort>

<Sort

sortKey={'POINTS'}

onSort={onSort}

>

Points

</Sort>

Archive

</div>

{ SORTS[sortKey](list).map(item =>

...

)}

</div>

Each Sort component gets a specific sortKey and the general onSort() function. Internally it calls
the method with the sortKey to set the specific key.

src/App.js

const Sort = ({ sortKey, onSort, children }) =>

<Button onClick={() => onSort(sortKey)}>

{children}

</Button>

As you can see, the Sort component reuses your common Button component. On a button click each
individual passed sortKey will get set by the onSort() method. Now you should be able to sort the
list when you click on the column headers.

But a button in a column header looks a bit silly. Let’s give the Sort a proper className.

Advanced React Components 136

src/App.js

const Sort = ({ sortKey, onSort, children }) =>

<Button

onClick={() => onSort(sortKey)}

className="button-inline"

>

{children}

</Button>

It should look nice now. The next goal would be to implement reverse sort as well. The list should
get reverse sorted once you click a Sort component twice. First you need to define the reverse state.

src/App.js

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

isLoading: false,

sortKey: 'NONE',

isSortReverse: false,

};

Now in your sort method you can evaluate if the list is reverse sorted. It is when sortKey in the state
is the same as the incoming sortKey and the reverse state is not already set to true.

src/App.js

onSort(sortKey) {

const isSortReverse = this.state.sortKey === sortKey && !this.state.isSortReve\

rse;

this.setState({ sortKey, isSortReverse });

}

Again you can pass the reverse prop to your Table component.

Advanced React Components 137

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

isLoading,

sortKey,

isSortReverse

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

) || [];

return (

<div className="page">

...

<Table

list={list}

sortKey={sortKey}

isSortReverse={isSortReverse}

onDismiss={this.onDismiss}

onSort={this.onSort}

/>

...

</div>

);

}

}

Advanced React Components 138

The Table has to have an arrow function block body to compute the data now.

src/App.js

const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

<div className="table">

<div className="table-header">

...

</div>

{ reverseSortedList.map(item =>

...

)}

</div>

);

}

The reverse sort should work now.

Last but not least you have to deal with one open question for the sake of an improved user
experience. Can a user distinguish which column is actively sorted? So far, it is not possible. Let’s
give the user a visual feedback.

Each Sort component gets its specific sortKey already. It could be used to identify the activated
sort. You can pass the sortKey from the internal component state as active sort key to your Sort
component.

Advanced React Components 139

src/App.js

const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={onSort}

activeSortKey={sortKey}

>

Title

</Sort>

<Sort

sortKey={'AUTHOR'}

onSort={onSort}

activeSortKey={sortKey}

>

Author

</Sort>

<Sort

sortKey={'COMMENTS'}

onSort={onSort}

activeSortKey={sortKey}

>

Comments

</Sort>

Advanced React Components 140

<Sort

sortKey={'POINTS'}

onSort={onSort}

activeSortKey={sortKey}

>

Points

</Sort>

Archive

</div>

{ reverseSortedList.map(item =>

...

)}

</div>

);

}

Now in your Sort component you know based on the sortKey and activeSortKey if the sort is
active. Give your Sort component an extra class attribute, when it is sorted, to give the user a
visual feedback.

src/App.js

const Sort = ({

sortKey,

activeSortKey,

onSort,

children

}) => {

const sortClass = ['button-inline'];

if (sortKey === activeSortKey) {

sortClass.push('button-active');

}

return (

<Button

onClick={() => onSort(sortKey)}

className={sortClass.join(' ')}

Advanced React Components 141

>

{children}

</Button>

);

}

The way to define the class is a bit clumsy, isn’t it? There is a neat little library to get rid of this.
First you have to install it.

Command Line

npm install --save classnames

And second you have to import it on top of your src/App.js file.

src/App.js

import React, { Component } from 'react';

import { sortBy } from 'lodash';

import classNames from 'classnames';

import './App.css';

Now you can use it to define your component className with conditional classes.

src/App.js

const Sort = ({

sortKey,

activeSortKey,

onSort,

children

}) => {

const sortClass = classNames(

'button-inline',

{ 'button-active': sortKey === activeSortKey }

);

return (

<Button

onClick={() => onSort(sortKey)}

className={sortClass}

>

{children}

Advanced React Components 142

</Button>

);

}

Again, when you run your tests, you should see failing snapshot tests but also failing unit tests for
the Table component. Since you changed again your component representations, you can accept the
snapshot tests. But you have to fix the unit test. In your src/App.test.js file you need to provide a
sortKey and the isSortReverse boolean for the Table component.

src/App.test.js

...

describe('Table', () => {

const props = {

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

sortKey: 'TITLE',

isSortReverse: false,

};

...

});

Once again you might need to accept the failing snapshot tests for your Table component, because
you provided props for the Table and the full component renders now.

Your advanced sort interaction is complete now.

Exercises:

• use a library like Font Awesome¹⁰⁵ to indicate the (reverse) sort
– it could be an arrow up or down icon next to each Sort header

• read more about the classnames library¹⁰⁶

¹⁰⁵http://fontawesome.io/
¹⁰⁶https://github.com/JedWatson/classnames

http://fontawesome.io/
https://github.com/JedWatson/classnames
http://fontawesome.io/
https://github.com/JedWatson/classnames

Advanced React Components 143

You have learned advanced component techniques in React! Let’s recap the last chapters:

• React
– the ref attribute to reference DOM nodes
– higher order components are a common way to build advanced components
– implementation of advanced interactions in React
– conditional classNames with a neat helper library

• ES6
– rest destructuring to split up objects and arrays

You can find the source code in the official repository¹⁰⁷.

¹⁰⁷https://github.com/rwieruch/hackernews-client/tree/9456117fb67bbe98d7e3f41bbc85b4a035020e7e

https://github.com/rwieruch/hackernews-client/tree/9456117fb67bbe98d7e3f41bbc85b4a035020e7e
https://github.com/rwieruch/hackernews-client/tree/9456117fb67bbe98d7e3f41bbc85b4a035020e7e

State Management in React and beyond

You have learned the basics of state management in React already in the previous chapters. This
chapter digs a bit deeper into the topic. You will learn best practices, how to apply them and why
you could consider using a third party state management library.

144

State Management in React and beyond 145

Lifting State

Only the App component is a stateful ES6 component in your application. It handles a lot of
application state and logic (methods). Maybe you have noticed that you pass a lot of properties
to your Table component. Most of the props are only used in the component. It makes no sense that
the App component knows about them.

The sort functionality is only handled in the Table component. You could move it closer to the Table
component. The App component doesn’t need to know about it at all. The process of refactoring
substate from one component to another is known as lifting state. In your case you want to move
state that isn’t used in the App component closer to the Table component. The state moves down
from parent to child component.

In order to deal with state and methods in the Table component, it has to become an ES6 class
component. The refactoring from functional stateless component to ES6 class component is straight
forward.

Your Table component as a functional stateless component:

src/App.js

const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

...

);

}

Can get refactored to an ES6 class component:

State Management in React and beyond 146

src/App.js

class Table extends Component {

render() {

const {

list,

sortKey,

isSortReverse,

onSort,

onDismiss

} = this.props;

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

...

);

}

}

Since you want to deal with state and methods in your component, you have to add a constructor
and initial state.

src/App.js

class Table extends Component {

constructor(props) {

super(props);

this.state = {};

}

render() {

...

}

}

Now you can move state and methods from your App component down to your Table component.

State Management in React and beyond 147

src/App.js

class Table extends Component {

constructor(props) {

super(props);

this.state = {

sortKey: 'NONE',

isSortReverse: false,

};

this.onSort = this.onSort.bind(this);

}

onSort(sortKey) {

const isSortReverse = this.state.sortKey === sortKey && !this.state.isSortRe\

verse;

this.setState({ sortKey, isSortReverse });

}

render() {

...

}

}

Don’t forget to remove the moved state and onSort() method from your App component.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

isLoading: false,

};

this.setSearchTopstories = this.setSearchTopstories.bind(this);

State Management in React and beyond 148

this.fetchSearchTopstories = this.fetchSearchTopstories.bind(this);

this.onDismiss = this.onDismiss.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.needsToSearchTopstories = this.needsToSearchTopstories.bind(this);

}

...

}

Additionally you can make the Table component API more lightweight. Remove the props which
are handled internally in the Table component.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

isLoading

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

) || [];

return (

<div className="page">

...

State Management in React and beyond 149

<Table

list={list}

onDismiss={this.onDismiss}

/>

...

</div>

);

}

}

Now in your Table component you can use the internal onSort() method and the internal Table
state.

src/App.js

class Table extends Component {

...

render() {

const {

list,

onDismiss

} = this.props;

const {

sortKey,

isSortReverse,

} = this.state;

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={this.onSort}

activeSortKey={sortKey}

State Management in React and beyond 150

>

Title

</Sort>

<Sort

sortKey={'AUTHOR'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Author

</Sort>

<Sort

sortKey={'COMMENTS'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Comments

</Sort>

<Sort

sortKey={'POINTS'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Points

</Sort>

Archive

</div>

{ reverseSortedList.map((item) =>

...

)}

</div>

);

}

}

State Management in React and beyond 151

Your application should still work. But you made a crucial refactoring. You moved functionality
and state closer to a component. Other components got more lightweight again. Additionally
the component API of the Table got more lightweight because it deals internally with the sort
functionality.

The process of lifting state can go the other way as well: from child to parent component - lifting
state up. Imagine you were dealing with internal state in a child component. Now you want to fulfill
a requirement to show the state in your parent component as well. You would have to lift up the
state to your parent component. But it goes even further. Imagine you want to show the state in
a sibling component of your child component. Again you would have to lift the state up to your
parent component. The parent component deals with the internal state, but exposes it to both child
components.

Exercises:

• read more about lifting state in React¹⁰⁸

¹⁰⁸https://facebook.github.io/react/docs/lifting-state-up.html

https://facebook.github.io/react/docs/lifting-state-up.html
https://facebook.github.io/react/docs/lifting-state-up.html

State Management in React and beyond 152

Revisited: setState()

So far, you have used React setState() to manage your internal component state. You can pass an
object to the function where you can update partially the internal state.

Code Playground

this.setState({ foo: bar });

But setState() doesn’t take only an object. In its second version, you can pass a function to update
the state.

Code Playground

this.setState((prevState, props) => {

...

});

Why should you want to do that? There is one crucial use case where it makes sense to use a function
over an object. It is when you update the state depending on the previous state or props. If you don’t
use a function, the internal state management can cause bugs.

But why does it cause bugs to use an object over a function when the update depends on the previous
state or props? The React setState() method is asynchronous. React batches setState() calls and
executes them eventually. It can happen that the previous state or props changed in between when
you would rely on it.

Code Playground

const { fooCount } = this.state;

const { barCount } = this.props;

this.setState({ count: fooCount + barCount });

Imagine that fooCount and barCount, thus the state or the props, can change somewhere else in your
components. In a growing application you have more often ‘setState()’ calls across your application.
Since setState() executes asynchronously, you would rely in the example on likely stale values.

With the function approach, the function in setState() is a callback that operates on the state and
props at the time of executing the callback function. Even though setState() is asynchronous, with
a function it takes the state and props at the time when it is executed.

State Management in React and beyond 153

Code Playground

this.setState((prevState, props) => {

const { fooCount } = prevState;

const { barCount } = props;

return { count: fooCount + barCount };

});

Now, lets get back to your code to fix this behavior. Together we will fix it for one place where
setState() is used and relies on the state or props. Afterward you are able to fix it at places where
the state update relies on the previous state or props.

The setSearchTopstories() method relies on the previous state and thus is a perfect example to
use a function over an object in setState(). Right now it looks like the following code snippet. You
extract values from the state, but update the state depending on the previous state asynchronously.

src/App.js

setSearchTopstories(result) {

const { hits, page } = result;

const { searchKey, results } = this.state;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

});

}

Now you can use the function to prevent bugs because of a stale state.

State Management in React and beyond 154

src/App.js

setSearchTopstories(result) {

const { hits, page } = result;

this.setState(prevState => {

...

});

}

You can move the whole block that you already implemented into the function. You only have to
exchange that you operate on the prevState rather than this.state.

src/App.js

setSearchTopstories(result) {

const { hits, page } = result;

this.setState(prevState => {

const { searchKey, results } = prevState;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

return {

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

};

});

}

That will fix the issue with a stale state. Since it is a function, you can extract the function for an
improved readability. That’s one more advantage to use a function over an object. The function can
live outside of the component. But you have to use a higher order function to pass the result. After
all you want to update the state based on the fetched result from the API.

State Management in React and beyond 155

src/App.js

setSearchTopstories(result) {

const { hits, page } = result;

this.setState(updateSearchTopstoriesState(hits, page));

}

The updateSearchTopstoriesState() function has to return a function. It is a higher order function.
You can define this higher order function outside of your App component. Note how the function
signature changes slightly now.

src/App.js

const updateSearchTopstoriesState = (hits, page) => (prevState) => {

const { searchKey, results } = prevState;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

return {

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

};

};

class App extends Component {

...

}

That’s it. The function over an object approach in setState() fixes potential bugs yet increases
readability and maintainability of your code.

State Management in React and beyond 156

Exercise:

• read more about React using state correctly¹⁰⁹
• refactor all setState methods to use a function

– but only when it makes sense, because it relies on props or state

¹⁰⁹https://facebook.github.io/react/docs/state-and-lifecycle.html#using-state-correctly

https://facebook.github.io/react/docs/state-and-lifecycle.html#using-state-correctly
https://facebook.github.io/react/docs/state-and-lifecycle.html#using-state-correctly

State Management in React and beyond 157

Taming the State

The previous chapters have shown you that state management can be a crucial topic in your
application. In general, not only React but a lot of SPA frameworks struggle with it. Applications
got more complex in the recent years. One big challenge in web applications nowadays is to tame
and control the state.

Compared to other solutions React already made a big step forward. The unidirectional data flow
and a simple API to manage state in a component are indispensable. These concepts make it easier to
reason about your state and your state changes. It makes it easier to reason about it on a component
level and to a certain degree on a application level.

In a growing application it gets harder to reason about state changes. You can introduce bugs
by operating on stale state when using an object over a function in setState(). You have to
lift state around to share necessary or hide unnecessary state across components. It can happen
that a component needs to lift up state, because its sibling component depends on it. Perhaps the
component is far away in the component tree and you have to share the state across the whole
component tree. It happens that components get involved to a greater extent in state management.
But after all the main responsibility of components should be representing the UI, shouldn’t it?

Because of all these reasons, there exist standalone solutions to take care of the state management.
These solutions are not only used in React. However, that’s what makes the React ecosystem such
a powerful place. You can use different solutions to solve your problems. To address the problem
of scaling state management, you might have heard of the libraries Redux¹¹⁰ or MobX¹¹¹. You can
use either of these solutions in a React application. They come with extensions, react-redux¹¹² and
mobx-react¹¹³, to integrate with React.

Redux andMobX are outside of the scope of this book.When you have finished the book, youwill get
guidance on how you can continue to learn React and its ecosystem. One learning path could be to
learn Redux. Before you dive into the topic of external state management, I can recommend to read
this article¹¹⁴. It aims to give you a better understanding of how to learn external state management.

Exercises:

• read more about external state management and how to learn it¹¹⁵

¹¹⁰http://redux.js.org/docs/introduction/
¹¹¹https://mobx.js.org/
¹¹²https://github.com/reactjs/react-redux
¹¹³https://github.com/mobxjs/mobx-react
¹¹⁴https://www.robinwieruch.de/redux-mobx-confusion/
¹¹⁵https://www.robinwieruch.de/redux-mobx-confusion/

http://redux.js.org/docs/introduction/
https://mobx.js.org/
https://github.com/reactjs/react-redux
https://github.com/mobxjs/mobx-react
https://www.robinwieruch.de/redux-mobx-confusion/
https://www.robinwieruch.de/redux-mobx-confusion/
http://redux.js.org/docs/introduction/
https://mobx.js.org/
https://github.com/reactjs/react-redux
https://github.com/mobxjs/mobx-react
https://www.robinwieruch.de/redux-mobx-confusion/
https://www.robinwieruch.de/redux-mobx-confusion/

State Management in React and beyond 158

You have learned advanced state management in React! Let’s recap the last chapters:

• React
– lift state management up and down to suitable components
– setState can use a function to prevent stale state bugs
– existing external solutions that help you to tame the state

You can find the source code in the official repository¹¹⁶.

¹¹⁶https://github.com/rwieruch/hackernews-client/tree/72a0828790f365af9d68a9f529c8ebe5db2e9c7f

https://github.com/rwieruch/hackernews-client/tree/72a0828790f365af9d68a9f529c8ebe5db2e9c7f
https://github.com/rwieruch/hackernews-client/tree/72a0828790f365af9d68a9f529c8ebe5db2e9c7f

Final Steps to Production

The last chapters will show you how to deploy your application to production. You will use the free
hosting service Heroku. On the way to deploy your application you will learn more about create-
react-app.

159

Final Steps to Production 160

Eject

The following step and knowledge is not necessary to deploy your application to production. Still,
I want to explain it to you. create-react-app comes with one feature to prevent vendor lock-in. A
vendor lock-in usually happens when you buy into a technology but there is no escape hatch. In a
vendor lock-in it is hard to change the technology. In create-react-app you have the escape hatch
with “eject”.

In your package.json you will find the scripts to start, test and build your application. The last script
is eject. You could try it, but there is no way back. It is a one-way operation. Once you eject,
you can’t go back!. If you just started to learn React, it makes no sense to leave the convenient
environment of create-react-app.

If you would run npm run eject, the command would copy all the configuration and dependencies
to your package.json and a new config/ folder. You would convert the whole project into a custom
setup with tooling that includes Babel, Webpack and ESLint. After all, you would have full control
over all these tools.

The official documentation says that create-react-app is suitable for small to mid size projects. You
shouldn’t feel obligated to use the “eject” command.

Exercises:

• read more about eject¹¹⁷

¹¹⁷https://github.com/facebookincubator/create-react-app#converting-to-a-custom-setup

https://github.com/facebookincubator/create-react-app#converting-to-a-custom-setup
https://github.com/facebookincubator/create-react-app#converting-to-a-custom-setup

Final Steps to Production 161

Deploy your App

In the end no application should stay on localhost. You want to go live. Heroku is a platform as
a service where you can host your application. They offer a seamless integration with React. To
be more specific: It’s possible to deploy a create-react-app in minutes. It is a zero-configuration
deployment which follows the philosophy of create-react-app.

You need to fulfill two requirements before you can deploy your application to Heroku:

• install the Heroku CLI¹¹⁸
• create a free Heroku account¹¹⁹

If you have installed Homebrew, you can install the Heroku CLI from command line:

Command Line

brew update

brew install heroku-toolbelt

Now you can use git and Heroku CLI to deploy your application.

Command Line

git init

heroku create -b https://github.com/mars/create-react-app-buildpack.git

git add .

git commit -m "react-create-app on Heroku"

git push heroku master

heroku open

That’s it. I hope your application is up and running now. If you run into problems you can check
the following resources:

• Deploying React with Zero Configuration¹²⁰
• Heroku Buildpack for create-react-app¹²¹

¹¹⁸https://devcenter.heroku.com/articles/heroku-command-line
¹¹⁹https://www.heroku.com/
¹²⁰https://blog.heroku.com/deploying-react-with-zero-configuration
¹²¹https://github.com/mars/create-react-app-buildpack

https://devcenter.heroku.com/articles/heroku-command-line
https://www.heroku.com/
https://blog.heroku.com/deploying-react-with-zero-configuration
https://github.com/mars/create-react-app-buildpack
https://devcenter.heroku.com/articles/heroku-command-line
https://www.heroku.com/
https://blog.heroku.com/deploying-react-with-zero-configuration
https://github.com/mars/create-react-app-buildpack

Outline

That was the last chapter of the book. I hope it helped you to get traction in React. If you liked the
book, share it as a way to learn React to your friends. It should be used as giveaway. In addition,
you could review the book on Goodreads¹²² to support it.

At the moment I am writing my next book about state management in React. It focuses mainly
on Redux and all the best practices around it. But it will also teach local state management, show
alternatives in state management with MobX and outline technologies like Relay/GraphQL. You
can already pre-order it¹²³. If you liked the Road to learn React, you can support my doings by
pre-ordering it.

But where can you go from here after you have read this book? You can either extend the
application on your own or dive into your own React project. Before you dive into another book,
course or tutorial, you should create your own hands-on React project. Do it for one week, take it
to production like it was shown in the last chapter, and reach out to me on Twitter¹²⁴. I am curious
what you will build after you have read the book. You can also find me on GitHub¹²⁵ to share your
repository.

If you are looking for further extensions for your application, I can recommend several learning
paths:

• Code Organization: On your way reading the book you came across one chapter about Code
Organization. You could apply these changes now, if you haven’t done it yet. It will organize
your components in structured files and folders (modules). In addition, it helps to understand
and learn the principles of code splitting, reusability, maintainability and module API design.

• Testing: The book only scratched the surface of testing. If you are not familiar with the general
topic, you could dive deeper into the concepts of unit testing and integration testing, especially
in context of React applications. On an implementation level, I would recommend to stick to
Enzyme and Jest in order to refine your approach of testing in React.

• Asynchronous Requests: You can substitute the native fetch API with third party alternatives

¹²²https://www.goodreads.com/book/show/33541539-the-road-to-learn-react
¹²³https://gumroad.com/products/uwiyI
¹²⁴https://twitter.com/rwieruch
¹²⁵https://github.com/rwieruch

162

https://www.goodreads.com/book/show/33541539-the-road-to-learn-react
https://gumroad.com/products/uwiyI
https://gumroad.com/products/uwiyI
https://twitter.com/rwieruch
https://github.com/rwieruch
https://www.goodreads.com/book/show/33541539-the-road-to-learn-react
https://gumroad.com/products/uwiyI
https://twitter.com/rwieruch
https://github.com/rwieruch

Outline 163

to perform asynchronous requests: superagent¹²⁶ or axios¹²⁷. There is no perfect solution to
make asynchronous requests. But by exchanging the buildings blocks around React, you make
the experience how powerful it can be to have this flexibility¹²⁸. In frameworks you usually
stick to one solution. In a flexible ecosystem like React you can exchange the solutions.

• Type Checking: In one chapter you have used React PropTypes to define component
interfaces. It is a good practice to prevent bugs. But the PropTypes are only checked on
runtime. You can go one step further to introduce static type checking on compile time.
TypeScript¹²⁹ is one popular approach. But in the React ecosystem people often use Flow¹³⁰. I
can recommend to give Flow a shot.

• Tooling with Webpack and Babel: In the book you used create-react-app to set up your
application. At some point, when you learned React, you want to learn the tooling around it.
It enables you to setup your own project without create-react-app. I can recommend to follow
a minimal setup with Webpack and Babel¹³¹. Afterward you could use ESLint¹³² to follow a
unified code style in your application.

• State Management: You have used React this.setState() to manage internal component
state. That’s a perfect start. However, in a scaling application you will experience the limits
of internal component state. Therefore you have third party state management libraries like
Redux or MobX¹³³. My next book¹³⁴ will give you guidance on this topic.

• Routing: You can implement routing for your application with react-router¹³⁵. So far you
only have one page in your application. React Router helps you to have multiple pages across
multiple URLs.

• React Native: React Native¹³⁶ brings your application on mobile devices. You can apply your
learnings from React to ship iOS and Android applications. The learning curve, once you
learned React, shouldn’t be steep in React Native. Both share the same principles. Youwill only
encounter different layout components on mobile than you are used to in web applications.

In general, I invite you to visit my website¹³⁷ to find more interesting topics about web development
but also general topics in software engineering. You can subscribe¹³⁸ to get updates roughly every 3
months to your inbox.

Once again, if you liked the book, I want you to take a moment to think about a person who would
be a good match to learn React. Reach out to that person and share the book. It would mean a lot to

¹²⁶https://github.com/visionmedia/superagent
¹²⁷https://github.com/mzabriskie/axios
¹²⁸https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
¹²⁹https://www.typescriptlang.org/
¹³⁰https://flowtype.org/
¹³¹https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
¹³²https://www.robinwieruch.de/react-eslint-webpack-babel/
¹³³https://www.robinwieruch.de/redux-mobx-confusion/
¹³⁴https://gumroad.com/products/uwiyI
¹³⁵https://github.com/ReactTraining/react-router
¹³⁶https://facebook.github.io/react-native/
¹³⁷https://www.robinwieruch.de/
¹³⁸https://www.getrevue.co/profile/rwieruch

https://github.com/visionmedia/superagent
https://github.com/mzabriskie/axios
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://www.typescriptlang.org/
https://flowtype.org/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.robinwieruch.de/react-eslint-webpack-babel/
https://www.robinwieruch.de/redux-mobx-confusion/
https://gumroad.com/products/uwiyI
https://github.com/ReactTraining/react-router
https://facebook.github.io/react-native/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://github.com/visionmedia/superagent
https://github.com/mzabriskie/axios
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://www.typescriptlang.org/
https://flowtype.org/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.robinwieruch.de/react-eslint-webpack-babel/
https://www.robinwieruch.de/redux-mobx-confusion/
https://gumroad.com/products/uwiyI
https://github.com/ReactTraining/react-router
https://facebook.github.io/react-native/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch

Outline 164

me. The book is intended to be given to others. It will improve over time when more people consume
it and share their feedback.

Thank you a lot for reading the Road to learn React.

Stay tuned for the next one¹³⁹. Robin

¹³⁹https://gumroad.com/products/uwiyI

https://gumroad.com/products/uwiyI
https://gumroad.com/products/uwiyI

	Table of Contents
	Foreword
	Testimonials
	Education for Children
	FAQ
	Change Log
	How to read it?
	What you can expect (so far…)
	Introduction to React
	Hi, my name is React.
	Requirements
	node and npm
	Installation
	Zero-Configuration Setup
	Introduction to JSX
	ES6 const and let
	ReactDOM
	Hot Module Reloading
	Complex JavaScript in JSX
	ES6 Arrow Functions
	ES6 Classes

	Basics in React
	Internal Component State
	ES6 Object Initializer
	Unidirectional Data Flow
	Interactions with Forms and Events
	ES6 Destructuring
	Controlled Components
	Split Up Components
	Composeable Components
	Reusable Components
	Component Declarations
	Styling Components

	Getting Real with an API
	Lifecycle Methods
	Fetching Data
	ES6 Spread Operators
	Conditional Rendering
	Client- or Server-side Search
	Paginated Fetch
	Client Cache

	Code Organization and Testing
	ES6 Modules: Import and Export
	Code Organization with ES6 Modules
	Component Interface with PropTypes
	Snapshot Tests with Jest
	Unit Tests with Enzyme

	Advanced React Components
	Ref a DOM Element
	Loading …
	Higher Order Components
	Advanced Sorting

	State Management in React and beyond
	Lifting State
	Revisited: setState()
	Taming the State

	Final Steps to Production
	Eject
	Deploy your App

	Outline

