[image: image3.png]

Globe Labs LBS API

Developer's Guide
v. 1.03
February 2009

Copyright (c) 2009
Document History

To ensure that you have the most current version of this document, please check the Globe Labs website (http://www.globelabs.com.ph)

	Version
	Author
	Date
	Notes

	1.00
	Globe Labs
	Feb 01, 2009
	Initial Public Release

	1.01
	Globe Labs
	Feb 10, 2009
	Added documentation on REST-based interfaces

	1.02
	Globe Labs
	Feb 10, 2009
	Formatting changes

	1.03
	Globe Labs
	Apr 02, 2009
	Added new “apiType” parameter for the getConsent call

INTRODUCTION

The Globe LBS API allows third-party developers to integrate location-based / positioning capability into their mobile, web-based and desktop applications via a web-services-based interface. You can use the API to identify the location of a Globe subscriber via remote procedure calls using the Simple Object Access Protocol (SOAP) over HTTP as well as a REST-based HTTP interface. Via the API, an application can determine the approximate latitude and longitude coordinates of a Globe subscriber opening up a whole new world of possibilities for application and solutions developers.

The API is intended to encourage innovation by opening Globe's telecommunications infrastructure to new and unique mash-up applications and technologies. It is currently being developed and hosted by Globe Labs.

To get started using the API, you’ll need the following:

· A registered developer account with Globe Labs

· A good idea for a brand-new application

· A web-server / service that can process HTTP POST requests on a host that is publicly accessible over the Internet via an IP address or URL

· Working knowledge of web-services / SOAP / REST in the language of your choice

Access to the API is granted on a per application basis. You need to register your application with Globe Labs and specify that your application will require the LBS API. You also need to provide the set of Globe numbers that will be using the LBS service and the call-back URL your application will be using.

Globe Labs will assess your request and get back to you within 3 working days. Once you have been granted access, you will receive an email notification. This notification will also inform you about the application’s access details like your username and password.

You are free to register more than one application.

For more detailed information on how to gain access to the API, please refer to the Globe Labs website http://www.globelabs.com.ph.
OVERVIEW

The process of locating a Globe subscriber is a two-stage process. First, you need to get the subscriber’s consent. Only after the subscriber has agreed to be located can you derive the subscriber’s coordinates. A set of SOAP / REST requests and asynchronous callbacks are used for this. The diagram below provides an overview of the process:

[image: image1.jpg]
Note: During testing, the subscriber’s number has to be pre-approved / defined when you register an application. These restrictions can be removed once your application has been approved for publication / distribution.

To obtain the subscriber’s consent, your application issues a SOAP / REST call to the getConsent method to the API. The API then immediately responds with a response code and a transaction ID. This also initiates a SMS exchange between the subscriber and API. The API will send the SMS message “Globe LBS is asking for your consent. Reply ‘yes’ to grant consent or ‘no’ to reject consent.” If the subscriber replies YES, subsequent requests to get the subscriber’s location will be allowed. If the subscriber replies NO, the subscriber’s number will be blacklisted and subsequent LBS requests (including consent) to that subscriber will be blocked.

After a subscriber sends his/her SMS response, the API will send a HTTP POST request to the application’s callback URL. The POST request will contain XML data about the subscriber’s response, which the application can then act upon.

Once subscriber consent has been obtained, the application can now issue a SOAP / REST call to the getLoc method of the API. This method asynchronously initiates a request to locate a subscriber. As with the getConsent method, the method call immediately responds with a return code and a transaction ID. The call also initiates the network process by which Globe tries to locate the subscriber. Once the subscriber’s position has been determined, the API will send a HTTP POST request to the application’s callback URL containing XML data about the subscriber’s coordinates along with the transaction ID. The API will also send an SMS to the subscriber informing him / her that he / she has been located.

Note: A subscriber can opt-out of the LBS service. He / she can send the message “OFF <ASSIGNED SHORTCODE SUFFIX>” to 23730000. This will remove the subscriber from both the whitelist and blacklist, and allow him/her to receive LBS-related messages. You’ll have to obtain the subscriber’s consent again if you want to obtain his / her location. The SHORTCODE is assigned when you register your application with Globe Labs.

LIMITATIONS AND TERMS OF USE

The official Terms and Conditions of use are available on the Globe Labs website. http://www.globlelabs.com.ph
API DESCRIPTION

WSDL / URL endpoint
WSDL or the Web-Services Description Language is an XML document used in describing the services available in a web service. This is useful in determining what services are available and which network protocols they bound to. You’ll need the WSDL file for creating local proxies for your code to interact with. If you decide not to use the WSDL to create a local proxy, you can also use the URL endpoint well provide to you. The URL for the WSDL and the API endpoint will be made accessible to you once your application has been approved access to the API.

getConsent

Asks for consent from a subscriber to be located. Subscribers need to confirm before subsequent calls to getLoc are possible. Below are the parameters available for the method call.

	Parameters
	Description

	uName
	A valid username – this is given to you when you register your application (Required)

	uPin
	The PIN that was issued to you when you register your application. (Required)

	apiType
	For use with LBS, specify the string “location” in this field

	MSISDN
	The target cellphone number intended be located. This number must have been defined during the application registration process. (Required)

The API supports the use of both SOAP (or web service as popularized by Microsoft) method call as well as a REST-based interface.

Using SOAP

When using SOAP, you’d normally use a SOAP library in the programming language of your choice and a local proxy class derived from the WSDL file. You’d then call the method from within your code directly and the SOAP library should manage the conversion of the remote method call in the proper SOAP envelope XML data. After delivering the SOAP payload to the API interface, the API will respond with a SOAP response containing two data points: a return code (e.g. <return>201</return>) and a transaction ID (e.g. <tranID>23730001090522271352008112510115668</tranID>). Again, your SOAP library should handle the XML conversion for you.

Appendix 1 defines a sample SOAP envelope for the getConsent method and the SOAP-based response.

Using REST

If you plan on using the REST-based interface, calling the method is as simple as calling the URL endpoint via a HTTP POST request and making sure that the appropriate values are included as POST variables. The REST URL for the getConsent is below:

http://globelabs.api.server:1881/axis2/services/Platform/getConsent?
When you call this method via REST, the API should respond with an XML document containing nodes for the return value as well as the tranID. Below is an example of the response.

<?xml version="1.0" encoding="UTF-8"?>
<ns:getConsentResponse xmlns:ns="http://ESCPlatform/xsd">
<ns:ConsentReturn>
 <ns:return>203</ns:return>
 <ns:tranId>23730006091758896152009021206022814</ns:tranId>
</ns:ConsentReturn>
</ns:getConsentResponse>
You can parse the XML to extract the return and tranID values and your application can act accordingly.

Response Codes and Callback XML Data

Because the processing of the subscriber’s response happens asynchronously from the request (via the XML callback) you can use the transaction ID to cross-reference, callback requests to their original SOAP requests.

The tranID format is “Service short code+msisdn+timestamp.” The format of the timestamp will be “yyyymmddhhmiss”

The return codes and their descriptions are as follows:

	Return Code
	Description

	101
	Bad Request Message

	203
	Success

	301
	User is not allowed to access this service

	302
	User exceeded daily cap

	304
	Maximum Number of simultaneous connections reached

	305
	Invalid login credentials

	306
	User is disabled

	307
	Invalid target MSISDN

	501
	Invalid Mobtel

	505
	Empty value given in required argument

	602
	Maximum requests made

	603
	There is a pending SOAP request for this subscriber (getConsent)

	604
	Get consent timeout

	605
	There is a pending SOAP request for this subscriber (getLoc)

	700
	The target msisdn is whitelisted (consent reply = YES)

	701
	The target msisdn is blacklisted (consent reply = NO)

	702
	No Consent

	703
	Valid Get Location

	704
	Valid Get Consent

	705
	Valid Test Number

	801
	Request is beyond the prescribed time allotment

	802
	Internal system was unable to respond

	803
	Maximum total requests made

When the API issues a 203 response for the getConsent SOAP request, an SMS is sent to the target subscriber, asking for his/her consent. The API then waits for the subscriber’s response.

Note: The API will wait for 60 seconds from the time it sends a SMS message before a subscriber response times-out. It’s up to the application developer to inform the subscriber of the timeout. After a timeout, the application will need to request consent again from the subscriber.

The API will accommodate only 1 request per subscriber at a time for each getConsent request. This means that if two applications are asking for the subscriber’s consent, one application will have to wait for either the subscriber’s response or the 60-second timeout before a successful consent request can be made.

Once the API service receives the SMS message response, it sends a HTTP-POST request to your registered callback URL (The one you set during the registration process). You'll need to be able to access the raw HTTP POST data and parse it accordingly to extract the individual variables.

The format of the XML data as follows:

<?xml version="1.0" encoding="utf-8"?>

 <message>

 <param>

 <name>messageType</name>

 <value>getConsent</value>

 </param>

 <param>

 <name>tranId</name>

 <value>23730001090522271352008112510115668</value>

 </param>

 <param>

 <name>locationConsent</name>

 <value>0</value>

 </param>

 </message>

	Parameters
	Description

	messageType
	This will contain the type of message the callback receives. As all messages from the API will be passed to single callback URL, you’ll use this parameter to determine the type of message that was sent. For getConsent responses, this will be “getConsent”.

	tranId
	The transaction ID initially returned by the API during the initial SOAP request

	locationConsent
	The response of the subscriber. The possible normal range of values are:
Value
Definition

0
Accept (yes, whitelist)

1
Reject (no, blacklist)

9
Opt-out / reset

getLoc

Attempts to ascertain the location of a subscriber. Below are the parameters for the request.

	Parameters
	Description

	uName
	A valid username – this is given to you when you register your application (Required)

	uPin
	The PIN that was issued to you when you register your application. (Required)

	MSISDN
	The target cellphone number intended be located. This number must have been defined during the application registration process. (Required)

Just as with the getConsent method, you can use either the SOAP or REST based interfaces depending on your requirements.

Using SOAP

You can use the WSDL file and SOAP library to manage your SOAP requests. This means just defining the remote URL endpoint and calling the function or using a local proxy. Just like the getConsent method, after delivering the SOAP payload to the API interface, the API will respond with a SOAP response containing two data points: a return code (e.g. <return>201</return>) and a transaction ID (e.g. <tranID>23730001090522271352008112510115668</tranID>). Your code should normally receive this data as an array or object.

Appendix 2 defines a sample SOAP envelope for the getLoc method and the SOAP-based response.

Using REST

If you plan on using REST, the URL to call the method is:

http://iplaypen.globelabs.com.ph:1881/axis2/services/Platform/getLoc?
When called via REST, the API will respond with an XML document containing the return code and the transaction ID. Below is a sample:

<?xml version="1.0" encoding="UTF-8"?>
<ns:getLocResponse xmlns:ns="http://ESCPlatform/xsd">
<ns:LocationReturn>
 <ns:return>203</ns:return>
 <ns:tranId>23730006091758896152009021206022814</ns:tranId>
</ns:LocationReturn>
</ns:getLocResponse>
Response Codes and Callback XML Data

Because the processing of the subscriber’s response happens after the SOAP / REST request (via the XML callback) you can use the transaction ID to match callback requests to their original SOAP requests. The tranID is the same format as the getConsent request.

The return codes and their descriptions are as follows:

	Return Code
	Description

	101
	Bad Request Message

	203
	Success

	301
	User is not allowed to access this service

	302
	User exceeded daily cap

	304
	Maximum Number of simultaneous connections reached

	305
	Invalid login credentials

	306
	User is disabled

	307
	Invalid target MSISDN

	501
	Invalid target Mobtel

	505
	Empty value given in required argument

	510
	Platform encountered an error while processing the request.

	602
	Maximum requests made

	603
	There is a pending SOAP request for this subscriber (getConsent)

	605
	There is a pending SOAP request for this subscriber (getLoc)

	700
	The target msisdn is whitelisted (consent reply = YES)

	701
	The target msisdn is blacklisted (consent reply = NO)

	702
	Consent is required for the target MSISDN

	706
	Consent Timeout

	707
	Location timeout error, request was queued too long

	708
	Internal system was unable to respond

	709
	Unable to determine subscriber location error

	801
	Request is beyond the prescribed period for access

	802
	Internal system was unable to respond

	803
	Maximum total requests made

When the API issues a 203 response for the getConsent SOAP request, the API will try to determine the subscriber’s location. Once the location has been determined, the API sends a HTTP-POST request to your registered callback URL. Again, you'll need to be able to access and parse the raw HTTP POST.

The format of the XML data as follows:

<?xml version="1.0" encoding="utf-8"?>

 <message>

 <param>

 <name>messageType</name>

 <value>getLoc</value>

 </param>

 <param>

 <name>tranId</name>

 <value>23730001091785442562008112510115107</value>

 </param>

 <param>

 <name>returnCode</name>

 <value>203</value>

 </param>

 <param>

 <name>X</name>

 <value>142549.295N</value>

 </param>

 <param>

 <name>Y</name>

 <value>1210138.050E</value>

 </param>

 </message>

	Parameters
	Description

	messageType
	This will contain the type of message the callback receives. As all messages from the API will be passed to single callback URL, you’ll use this parameter to determine the type of message that was sent. For getLoc responses, this will be “getLoc”.

	tranId
	The transaction ID initially returned by the API during the initial SOAP request for getLoc

	returnCode
	When attempts to locate a subscriber are successful, this should normally contain the code 203. Refer to the other return codes above when the API returns an error and different code.

	X
	The longitude coordinate of a subscriber’s location

	Y
	The latitude coordinate of a subscriber’s location

Note: When the API returns a set of coordinates, it uses the WGS 84 spatial reference system.

Coordinates returned by the API are in degrees, minutes, and seconds but you have to parse the X and Y strings to properly format the coordinate value. The illustration below illustrates how the string is formatted:

[image: image2.png]
The letter value indicates the direction of the coordinate. This will typically be N, S, E or W. All of the digits before the decimal point and the two digits to the left of the decimal point refer to the seconds. The two digits to the left of the seconds value are the minutes. Finally, the remaining digits to the left are the value of degrees.

Note: the degrees value can be 2 digits (14) or 3 digits (121). Parse accordingly.

Using both coordinates, you can now determine the location of a subscriber.

SAMPLE CODE

For the sample code, we’ll the using the popular scripting language PHP to obtain the subscriber’s consent and determine his/her location. In addition to PHP, we’ll also be using NuSOAP, a SOAP library written completely in PHP. While most web hosting services these days provide PHP support at very affordable prices, some may not provide built-in SOAP support in PHP5. Because NuSOAP only requires PHP, we can start using it to provide SOAP client capability to our application with very little dependencies.

First we’ll obtain the subscriber’s consent by using the getConsent.php script.

<?php

// load the nusoap libraries. These are slower than those built in PHP5 but don't require you to recompile PHP

include_once("nusoap/lib/nusoap.php");

// create the client and define the URL endpoint

$client = new soapclient('http://iplaypen.globelabs.com.ph:1881/axis2/services/Platform/');

// set the character encoding, utf-8 is the standard.

$client->soap_defencoding = 'UTF-8';

// check if we generated an error in creating the client / assigning the endpoint

$err = $client->getError();

if ($err) {

 // Display the error

 $error_message = 'Constructor error: ' . $err;

}

// check if a message was sent

echo "calling service ...\n";

// Call the SOAP method, note the definition of the xmlnamespace as the third parameter in the call and how the posted message is added to the message string

$result = $client->call('getConsent', array(

 'uName' => 'yourusername',

 'uPin' => 'yourpassword',

 'MSISDN' => '0917XXXXXXX',

), "http://ESCPlatform/xsd");

// Check for a fault

if ($client->fault) {

 $error_message = "Fault Generated: \n";

} else {

 // Check for errors

 $err = $client->getError();

 if ($err) {

 // Display the error

 $error_message = "An unknown error was generated: $err \n";

 } else {

 // Display the result

 var_dump ($result);

 }

}

echo "\n";

die("exiting\n");

?>

.

The first line below shows the script creating a new instance of the soapclient class (as defined in the NuSOAP library). The constructor takes an URL endpoint as an argument and then checks if the URL endpoint is valid. On the second line, we set the text encoding parameter to utf-8.

$client = new soapclient('http://api_server_url:1881/axis2/services/Platform/');

$client->soap_defencoding = 'UTF-8';

The code below shows the soapclient object executing a call() method. The call() function does the actual work of creating a SOAP-compatible XML message and also sends the XML to our predefined endpoint.

$result = $client->call('getConsent', array(

 'uName' => 'yourusername',

 'uPin' => 'yourpassword',

 'MSISDN' => '0917XXXXXXX',

), "http://ESCPlatform/xsd");

The call method takes three arguments: the remote method to be called (getConsent), the parameters for the remote call (an associative array that matches the parameters of the web-service) and finally the XML namespace to be used in the SOAP call ("http://ESCPlatform/xsd"). Make sure to define your own username, password and MSISDN.

The final block of code merely checks for errors and displays the result to the user.
if ($client->fault) {

 $error_message = "Fault Generated: \n";

} else {

 // Check for errors

 $err = $client->getError();

 if ($err) {

 // Display the error

 $error_message = "An unknown error was generated: $err \n";

 } else {

 // Display the result

 var_dump ($result);

 }

}

Running the script should produce a result similar to the code below

>php getConsent.php

calling service ...

array(2) {

 ["return"]=>

 string(3) "203"

 ["tranId"]=>

 string(35) "23730006091758896152009020703024509"

}

exiting

As you can see, calling the service returns two parameters, a return value of 203 means that the API will now initiate a consent request to a subscriber and the tranID provides a unique transaction ID for you to use in cross-referencing your request.

Now when the subscriber responds, the API will send an API message to your callback URL. Let’s suppose that your callback URL is http://202.134.343.12/callback.php. The script callback.php, when called by the API, saves the raw XML data into a database. But accessing the script over a browser using a GET request will display the last 20 messages sent by the API.

To create the database run the SQL code below.

CREATE TABLE IF NOT EXISTS `raw_xml` (

 `id` int(10) unsigned NOT NULL auto_increment,

 `when_done` timestamp NOT NULL default CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,

 `xml` text,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM

And the code for callback.php is as follows:

$user = “yourdbuser”;

$pass = “yourdbpassword”;

// database connection

$db = mysql_connect ("localhost", $user, $pass);

if (!$db) {

 die (mysql_error());

}

mysql_select_db ($dbname, $db);

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

/* extract the raw post request */

$in = file_get_contents ("php://input");

/* store the raw request for debugging */

$sql = "INSERT INTO raw_xml(xml) VALUES ('".mysql_escape_string($in)."')";

mysql_query($sql, $db);

}

else {

/* display the last 20 raw XML posts for debugging */

$sql = "SELECT * FROM raw_xml ORDER BY id DESC LIMIT 30";

print "<html><head><title>Globe SMS/MMS API Demo</title></head><body>";

$result = mysql_query($sql, $db);

print "<table border=\"1\">";

while ($arr = mysql_fetch_array($result, MYSQL_ASSOC)) {

print "<tr>";

foreach ($arr as $fld=>$val) {

if ($fld == 'xml') {

$val = '<pre>'.htmlentities(beautyXML($val)).'</pre>';

}

print "<td>".$val."</td>";

}

print "</tr>";

}

print "</table>";

print "</body>";

}

The line

$in = file_get_contents ("php://input");

reads the raw POST data in the request and transfers the data into the variable $in. The variable contains a string with the XML you can parse for further processing.

To locate a subscriber, you can use the getLoc.php script below. It has essentially the same format as the getConset.php script except that the remote method call is different.

<?php

// load the nusoap libraries. These are slower than those built in PHP5 but don't require you to recompile PHP

include_once("nusoap/lib/nusoap.php");

// create the client and define the URL endpoint

$client = new soapclient('http://api_server_url:1881/axis2/services/Platform/');

// set the character encoding, utf-8 is the standard.

$client->soap_defencoding = 'UTF-8';

// check if we generated an error in creating the client / assigning the endpoint

$err = $client->getError();

if ($err) {

 // Display the error

 $error_message = 'Constructor error: ' . $err;

}

// check if a message was sent

echo "calling service ...\n";

// Call the SOAP method, note the definition of the xmlnamespace as the third parameter in the call and how the posted message is added to the message string

$result = $client->call('getLoc', array(

// note the different method

 'uName' => 'yourusername',

 'uPin' => 'yourpassword',

 'MSISDN' => '0917XXXXXXX',

), "http://ESCPlatform/xsd");

// Check for a fault

if ($client->fault) {

 $error_message = "Fault Generated: \n";

} else {

 // Check for errors

 $err = $client->getError();

 if ($err) {

 // Display the error

 $error_message = "An unknown error was generated: $err \n";

 } else {

 // Display the result

 var_dump ($result);

 }

}

echo "\n";

die("exiting\n");

?>

Once the API determines a subscriber’s location, the information will be sent to your callback URL. You can use the same callback.php script for this.

APPENDICES

Appendix 1. Sample SOAP Messages for the getConsent web service.

Request

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope soap:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>

 <soap:Body>

 <getConsent xmlns='http://ESCPlatform/xsd'>

 <uName xsi:type='xsd:string'>myusername</uName>

 <uPin xsi:type='xsd:int'>mypassword</uPin>

 <MSISDN xsi:type='xsd:long'>0917XXXXXXX</MSISDN>

 </getConsent>

 </soap:Body>

</soap:Envelope>

Response

<?xml version='1.0' encoding='utf-8'?>

<soapenv:Envelope xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'>

 <soapenv:Body>

 <ns:getConsentResponse xmlns:ns='http://ESCPlatform/xsd'>

 <ns:ConsentReturn>

 <ns:return>203</ns:return>

 <ns:tranId>23730001090522271352009012902010812</ns:tranId>

 </ns:ConsentReturn>

 </ns:getConsentResponse>

 </soapenv:Body>

</soapenv:Envelope>

Appendix 2. Sample SOAP Messages for the getLoc web service.

Request

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope soap:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>

 <soap:Body>

 <getLoc xmlns='http://ESCPlatform/xsd'>

 <uName xsi:type='xsd:string'>myusername</uName>

 <uPin xsi:type='xsd:int'>mypassword</uPin>

 <MSISDN xsi:type='xsd:long'>0917XXXXXXX</MSISDN>

 </getLoc>

 </soap:Body>

</soap:Envelope>
Response

<?xml version='1.0' encoding='utf-8'?>
<soapenv:Envelope xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'>

 <soapenv:Body>

 <ns:getLocResponse xmlns:ns='http://ESCPlatform/xsd'>

 <ns:LocationReturn>

 <ns:return>203</ns:return>

 <ns:tranId>23730001090522271352009012902014196</ns:tranId>

 </ns:LocationReturn>

 </ns:getLocResponse>

 </soapenv:Body>

</soapenv:Envelope>

PAGE
__

1
Globe Labs API Developer Guide
Copyright 2009, Globe Telecom. Not for quotation or redistribution.

