
Good Software
Lecture 6

GSL Peru 2014



What is Good Software?

❖ Low cost
❖ Good performance

➢ Bug-free, efficient, meets its purpose
❖ Easy to code

➢ Easy to understand, modular
❖ Easy to use

➢ Clients are satisfied



Developer’s Perspective



"High-quality software is not expensive. High-
quality software is faster and cheaper to build 
and maintain than low-quality software, from 
initial development all the way through total 
cost of ownership."
-Capers Jones



Developer Perspective

CISQ (Consortium for IT Software Quality)
Standards:

❖ Reliability 
❖ Efficiency 
❖ Security 
❖ Maintainability  



Developer Perspective:
Reliability
Measures the level of risk and likelihood of 
potential application failures

❖ Compliance with object-oriented and 
structured programming practices

❖ Avoid software patterns that lead to 
unexpected behaviors

❖ Avoid Dirty programming



Developer Perspective:
Reliability

❖ OOP
➢ Clear data structure relations
➢ Modular

❖ Quality Control
➢ Functionality met, Bug-free, Easy to use
➢ Unit Tests
➢ Peer Reviews



Developer Perspective:
Efficiency

Measure of source code efficiency and 
scalability

❖ Memory, network, disk space management
❖ Data access performance and management
❖ Coding practices (efficient algorithms)



Developer Perspective:
Efficiency
❖ Design Patterns

➢ General solution to a common, recurring problem
➢ Program organization, common data structures, 

algorithms, computation
➢ OOP: Shows the relations and interactions between 

unspecified classes and objects
❖ Optimization

➢ Execution time, memory usage, disk space, power 
consumption, bandwidth

➢ Design level - algorithm space/time efficiency
➢ Avoid poor coding



Developer Perspective:
Efficiency

❖ Code profiling
❖ Memory Usage Monitoring
❖ Load testing
❖ Application Verifier (Windows)



Developer Prospective:
Security
Measure of potential security breaches due to 
poor coding and architectural practices

❖ Secure controls: access to system functions, 
access control to programs

❖ Programming practices: code-level error-
exception handling

❖ Multi-layer design compliance



Developer Prospective:
Security

❖ Static Code Analysis Tools
➢ Flawfinder
➢ Compiler warning - GCC, etc
➢ Lint

❖ Dynamic Code Analysis Tools
➢ valgrind
➢ fsnoop
➢ Application Verifier

❖ Penetration Testing



Developer Perspective:
Maintainability
Notion of adaptability, portability, and 
transferability of code within a business

❖ Modularity, Understandability, Reusability, 
and Testability

❖ Source code file organization
❖ Architecture, program, and code-level   

documentation



Developer Perspective:
Maintainability

❖ Good, clean code
➢ Modular
➢ Balance of comments and whitespace

❖ Object Oriented Programming/Modular 
Programming, ADTs
➢ OOP/Modular allow code reuse
➢ Abstract Data Types are models for data structures 

with similar behaviors
➢ Using OOP/Modular and ADTs ease the 

understanding and evolution of code over time



Developer Perspective:
Maintainability (contd.)
❖ Interfaces

➢ Do not contain the implementation for functions
➢ Contain functions that are common to different 

classes, but the classes define the implementation
❖ Relation between OOP, ADTs and Interfaces

➢ Objects/Data structures: provide specific 
implementation to ADTs by extending ADTs

➢ Abstract Data Types: provide specific behaviors but 
not full implementations by implementing interfaces

➢ Interfaces: Contain the documentation matching the 
specific behaviors of the ADTs



Software Development Process

❖ Requirements
❖ Design
❖ Testing
❖ Peer Review



The Process:
Requirements

Know the product requirements before starting 
to create/build the product.

❖ Purpose or goal from customer’s point of 
view

❖ Objectives
❖ Features



The Process:
Design

Create a design for the product before building.

Using interfaces leads to clean, maintainable 
code.
Understand the overall system architecture and 
potential bottlenecks.



The Process:
Testing

Create Unit Tests before writing the code.
❖ Create tests for individual modules (method, 

class, interface) based on requirements
❖ Use systematic approach: partition input space
❖ Regression testing: Update tests and code as 

bugs are found
❖ Automation: run and check test results without 

manual effort



The Process:
Peer Review

More eyes on your code, better the code!

❖ Buddy Checking - simple peer review
❖ Walkthrough - group review of a component
❖ Software Inspection - Inspect code for defects



Software Development Tools

❖ Source Control
❖ Continuous Integration
❖ Peer Review
❖ Developer Productivity Tools



Tools:
Source Control

❖ Maintain revisions of source code
❖ Easy to revert mistakes and keep an audit trail
❖ Examples

➢ GIT, Subversion, Perforce, Starteam, etc.



Tools:
Continous Integration

❖ Automated builds and unit testing
❖ Part of XP and TDD
❖ Examples

➢ Cruise Control, TeamCity, etc



Tools:
Peer Review

❖ Maintain Code Quality
❖ Examples

➢ Code Collaborator, github, Crucible, etc



Tools:
Developer Productivity Tools

❖ Increase Coding Efficiencies
➢ Refactoring Tools

■ ReSharper, IntelliJ IDEA, Eclipse,PyCharm, etc
❖ Increase Code Quality

➢ Code Coverage Analysis
■ dotCover, JaCoCo, Emma, etc

➢ Profilers
■ dotTrace, Netbeans, etc

➢ Memory Leak Detectors
■ ANTS, Purify, JProfiler



Coding Standards

● Set of guideline to write code to 
● Create maintainable code through 

standardized style
● Does not work if everyone does not adhere 

to it

● Hungarian notation, CamelCase



Examples

● OpenStack - https://wiki.openstack.
org/wiki/CppCodingStandards

● http://www.possibility.
com/Cpp/CppCodingStandard.html

● http://www.cs.northwestern.
edu/academics/courses/311/html/coding-std.
html

● Java - Sun’s Java Coding Standards

https://wiki.openstack.org/wiki/CppCodingStandards
https://wiki.openstack.org/wiki/CppCodingStandards
https://wiki.openstack.org/wiki/CppCodingStandards
http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.cs.northwestern.edu/academics/courses/311/html/coding-std.html
http://www.cs.northwestern.edu/academics/courses/311/html/coding-std.html
http://www.cs.northwestern.edu/academics/courses/311/html/coding-std.html
http://www.cs.northwestern.edu/academics/courses/311/html/coding-std.html


Coding Standard Enforcement

Continuous Integration Plus

● C/C++ - lint - static code analysis
● C# - StyleCop, FxCop
● Java - CheckStyle
● Python - pylint, pyflake, pychecker



Don’t Repeat Yourself (DRY)
vegetables = ['asparagus', 'broccoli', 'cabbage']

print vegetables[0], 'is a vegetable'
print vegetables[2], 'is a vegetable'

def print_veg(index):
    print vegetables[index], 'is a vegetable'
print_veg(0)
print_veg(2)


