Software Engineering

Lecture 6
GSL Peru 2014

I B Em Massachuse tts \
I I I I Institute of S a - Universidad Catdlica
eshaclogy \ @ San Pablo

Housekeeping

e Please turn in your High Level Product
Specification

e No classes on holiday next Monday 28th and
Tuesday 29th

e Friday’s are not optional

e Video Crews in this Thursday and Friday,
24th and 25th

Roadmap

Review

e Persona, Value Creation, Strategy

e Software Design

This Week

e Finish Super High Level Business Plan
e High Level Prototype Plan

Moving Forwards

e Executive Summary
e Prototype

Now that you have
Use Cases...

What next?

il es1i

Objective

e On Time

e High Quality

e Meets user/persona needs - product must
allow user/persona to realize value

il es1i

Software Project Management

e Someone must manage the activities:
o What needs to be done?
o When? - Scheduling
o Who?
m Assignment
Resource management
Coordination - Team building
Morale management
Administrative

Simplified Project Management

Determine Tasks

Order Tasks

Estimate Tasks

Estimate Productivity
Calculate Time Required
Estimate Available Time
Create Schedule

Track Progress

ir csiid

Software Design

e Coding I= Software Design
e Need experience

o Design Patterns: Elements of Reusable Object-
Oriented Software
o Use parts of another project as template

e Very difficult, even if you have experience

Desion Patterns
Elements of Regsable
Ohject(){r.umlt‘d-'Si)"l\\m;r:

Data Model

Design Model and its Elements

Where to start...

Analyze

e Understand how requirements translate to
technology from the user/persona’s
perspective.

e Do not rely just on your perspective.

e Break up components at the high level.

e Mock up UI.

Ul Storyboard

End v - -
F o
-
Ovioads 10 1 pwmitd and ooty ‘\. 1\
for o O curont plan L
.
-

e ro 1
|
'\.
N_—
5
% .
Wihie mumimmng, OV

0 a0 appcenen dovdepar S

o i

ande st Bt A0 A S Bl ba o

Ul Flow Diagram (Storyboard)

Create Ul Mockups/Wireframes

Ay, Q3:38 P

=2 Private Messages e New message (el

WILLIAMS DOE Y es berday
Mocdle private message Hey, how are you, did you think about...
Hi John, you should go fo this link, there
s few iInformation about... 20/01/2001 30:45 PM

EMILY JOHNSON VMond ay

M
Hey, how are you, did you think about...
. o - Q0606000600
20/00/2011 10:45 B
20/00/2011 10:45 PM Hey, how are you, did you think about...

rmwm — 000G0Q600
Hey, how are you, dd you think about... Q; eaauamm @

o |20)

the + buthon redirect o Mecdle
contact selector view

Home return to the App dashboard.

Source: http://depann2000.com/gallery/temp/balsamig-mockups-examples

Snakes and Ladders

;v.v.v.v.vAv.v.v.v.vAv.v.v.v.vAv.vAvAv]

99 1 96 Al "

88 8¢ »
= 83 OIS)
5/ 2N 5
80 78 Oo (2] 74 73 »‘
é} " 67 68 ’

61 A QQQ) e; 55 % 66 69 oN
=8 00 ~ .4

59 se| X2 54 52 \

16 a7 a9 4

)

43 45 00&0 - 48 50 i

)

21 :g = 26 = %)5l »:
0’ 22 2 28 Q Y/
00 17 14 13 & ,‘

& /® 4

20 k&é}i 18 ‘§> 3

2 a 5 7 9 4

Snake and Ladders Rules

e Players - 2-4 players move tokens around the
board

e Moving - players must role a die, move
specified number of spaces (1-6), and perform
any actions

e Ladders - if a player lands on a ladder, they
climb to the top of the ladder

e Snakes - if a player lands on a snake, they must
sllde down the snake to the bottom _ p—

I'Iil' GSIR

Determine Components

il es1i

Data Modelling

e |dentify Data Objects and Attributes needed
to support Use Cases

e Examine them independent of processing

e Abstract objects at the level of
users/personas

il es1i

Snake and Ladders - Data Objects

e Game Board

Squares
o Start

o Finish
Ladders
Snakes
Players

Dice

il es1i

Determine Relationships
and Interactions

il es1i

Class Based Modelling

Expand Data Model to Class Model

Objects
Operations
Relationships
Collaboration

il es1i

Snake and Ladders

Square

N~

Start Finish Snake Ladder

|s Snake a reverse Ladder?

il es1i

Responsibilities

e The responsibility should be generic as possible

e System logic should be distributed in a way to best
solve the problem at hand

e Information and related behavior should reside in the
same class

e Information regarding a specific item should only exist in
a single class and spread across multiple classes.

e \When applicable, responsibilities can be shared among
related classes

Snake and Ladders -
Responsibilities

Game - keeps track of the state

Square - keeps track of player on it

Start - can hold multiple players

Finish - knows its the winning square and game
finish

Snake - sends a player down

e | adder - sends a player up

e Player - keeps track of the location, moves
along the square

Die - generates random _number.betw

ir csiid

Collaboration

Classes can

e manipulate its own data
e collaborate with other classes

Collaboration identifies relationships

e is-part-of relationship
e has-knowledge-of relationship
e depends-upon relationship

il es1i

Interfaces

e \When defining relationships or collaboration,
use interfaces

e Should be well defined
e Help insure modular design

e Use Abstract Base Class if interfaces are not
available

Snake and Ladders

public class Game {
private List<ISquare> squares;
private Queue<Player> players;
private Player _winner;

il es1i

Snake and Ladders

public class Player {
private String _name;
private ISquare square;

il es1i

Snake and Ladders

public class Square implements ISquare {
protected int _position;
protected Game game;
private Player player;

il es1i

Snake and Ladders

public class Square implements ISquare {
private Player _player;
public boolean isOccupied() {
return this._player != null;
}
public void enter(Player player) {
this._player = player;

}

public void leave(Player player) {
this._player = null;

Snake and Ladders

public interface ISquare {
public int position();
public ISquare moveAndLand(int moves);
public boolean isFirstSquare();
public boolean isLastSquare();
public void enter(Player player);
public void leave(Player player);
public boolean isOccupied();
public ISquare landHereOrGoHome();

Snake and Ladders

public class Square implements ISquare {
private Player _player;
public void enter(Player player) {
this. _player = player;

}

public class StartSquare extends Square {
private List<Player> players;

public void enter(Player player) {
this. _players.add(player);

Snake and Ladders

public class Player {
public void moveForward(int moves) {
_square.leave(this);
_square = _square.moveAndLand(moves);
_square.enter(this);

} public class Square implements ISquare {
public ISquare moveAndLand(int moves) {
} return _game.findSquare(position, moves).landHereOrGoHom:
} public class Game {
public ISquare findSquare(...) {

return this.etSquare target);

Design Principles
and Concepts

il es1i

Design Principles

e The design process should not suffer from

‘tunnel vision.’

e The design should be traceable to the

analysis model.
e The design should not reinvent the w
e The design should “minimize the inte
distance” between the software and t
problem as it exists in the real world.

. Aaye -~ -

ir csiid

neel.
lectual

ne

The design should exhibit uniformity and________

Design Principles

e The design should be structured to
accommodate change.

e The design should be structured to degrade
gently, even when aberrant data, events, or
operating conditions are encountered.

e Design is not coding, coding is not design.

e The design should be assessed for quality
as it is being created, not after the fact.

e The design should be reviewed to minimize

ir csiid

Fundamental Concepts

Abstraction - data, procedure, control

Informal Hiding - controlled interfaces

Refinement - elaboration of abstraction
Architecture - overall structure

Modularity - division into modules

Patterns - proven solutions

Stepwise Refinement - sequence of decomposition
Refactoring - process of improvement

Structural Partitioning - vertical or horizontal

Prototype

e Build a prototype to verify technical
assumptions

e Can be good way to iterate vague
requirements

e Prototype != Beta or Production code
o Misconception that the product is close to finished
o Too many shortcuts
o Rewrite for quality

e Not same as Agile Methodology

s s

Circle Back

e \/alidate that the requirements are met.
o Functional
o Non-functional
o Usability

e |f users cannot extract value from your
product, no sale.

il es1i

Simplified Seven Design Principles

1. The Reason It All Exists - to provide value to
Its users

KISS (Keep It Simple, Stupid!)

Maintain the Vision - Clear Vision

What You Produce, Others Will Consume
Be Open to the Future

Plan Ahead for Reuse

Think

NOoOOROWDN

ir csiid

References

e Snake and Ladder example - Object-
Oriented Design Principles - Oscar
Nierstrasz (http://scg.unibe.
ch/download/lectures/p2/P2-02-O0Design.
pdf)

il es1i

