
Software Engineering

Lecture 6
GSL Peru 2014



Housekeeping

● Please turn in your High Level Product 
Specification

● No classes on holiday next Monday 28th and 
Tuesday 29th

● Friday’s are not optional
● Video Crews in this Thursday and Friday, 

24th and 25th 



Roadmap

Review
● Persona, Value Creation, Strategy
● Software Design
This Week
● Finish Super High Level Business Plan
● High Level Prototype Plan
Moving Forwards
● Executive Summary
● Prototype



Now that you have
Use Cases...

What next?



Objective

● On Time
● High Quality
● Meets user/persona needs - product must 

allow user/persona to realize value



Software Project Management

● Someone must manage the activities:
○ What needs to be done?
○ When? - Scheduling
○ Who?

■ Assignment
■ Resource management
■ Coordination - Team building
■ Morale management
■ Administrative



Simplified Project Management

● Determine Tasks
● Order Tasks
● Estimate Tasks
● Estimate Productivity
● Calculate Time Required
● Estimate Available Time
● Create Schedule
● Track Progress



Software Design

● Coding != Software Design
● Need experience

○ Design Patterns: Elements of Reusable Object-
Oriented Software

○ Use parts of another project as template
● Very difficult, even if you have experience



Data Model



Where to start...

Analyze

● Understand how requirements translate to 
technology from the user/persona’s 
perspective.

● Do not rely just on your perspective.
● Break up components at the high level.
● Mock up UI.



UI Storyboard

Source: http://www.ibm.com/developerworks/rational/library/06/0404_donatelli/



UI Flow Diagram (Storyboard)

Source: http://www.agilemodeling.com/artifacts/uiFlowDiagram.htm



Create UI Mockups/Wireframes

Source: http://depann2000.com/gallery/temp/balsamiq-mockups-examples



Snakes and Ladders



Snake and Ladders Rules

● Players - 2-4 players move tokens around the 
board

● Moving - players must role a die, move 
specified number of spaces (1-6), and perform 
any actions

● Ladders - if a player lands on a ladder, they 
climb to the top of the ladder

● Snakes - if a player lands on a snake, they must 
slide down the snake to the bottom

● Winning - the player that lands on the last space 
by either landing on it or by using the ladder.



Determine Components



Data Modelling

● Identify Data Objects and Attributes needed 
to support Use Cases

● Examine them independent of processing
● Abstract objects at the level of 

users/personas



Snake and Ladders - Data Objects

● Game Board
● Squares

○ Start
○ Finish

● Ladders
● Snakes
● Players
● Dice



Determine Relationships 
and Interactions



Class Based Modelling

Expand Data Model to Class Model

● Objects
● Operations
● Relationships
● Collaboration



Snake and Ladders

Square

Start Finish Snake Ladder

Is Snake a reverse Ladder?



Responsibilities

● The responsibility should be generic as possible 
● System logic should be distributed in a way to best 

solve the problem at hand
● Information and related behavior should reside in the 

same class
● Information regarding a specific item should only exist in 

a single class and spread across multiple classes.
● When applicable, responsibilities can be shared among 

related classes



Snake and Ladders - 
Responsibilities
● Game - keeps track of the state
● Square - keeps track of player on it
● Start - can hold multiple players
● Finish - knows its the winning square and game 

finish
● Snake - sends a player down
● Ladder - sends a player up
● Player - keeps track of the location, moves 

along the square
● Die - generates random number between 1-6



Collaboration

Classes can
● manipulate its own data
● collaborate with other classes
Collaboration identifies relationships
● is-part-of relationship
● has-knowledge-of relationship
● depends-upon relationship



Interfaces

● When defining relationships or collaboration, 
use interfaces

● Should be well defined
● Help insure modular design
● Use Abstract Base Class if interfaces are not 

available



Snake and Ladders

public class Game {
private List<ISquare> _squares;
private Queue<Player> _players;
private Player _winner;
...

}



Snake and Ladders

public class Player {
private String _name;
private ISquare _square;
...

}



Snake and Ladders

public class Square implements ISquare {
protected int _position;
protected Game _game;
private Player _player;
...

}



Snake and Ladders
public class Square implements ISquare {

private Player _player;
public boolean isOccupied() {

return this._player != null;
}
public void enter(Player player) {

this._player = player;
}
public void leave(Player player) {

this._player = null;
}
...

}



Snake and Ladders
public interface ISquare {

public int position();
public ISquare moveAndLand(int moves);
public boolean isFirstSquare();
public boolean isLastSquare();
public void enter(Player player);
public void leave(Player player);
public boolean isOccupied();
public ISquare landHereOrGoHome();

}



Snake and Ladders
public class Square implements ISquare {

private Player _player;
public void enter(Player player) {

this._player = player;
}
...

}
public class StartSquare extends Square {

private List<Player> _players;
public void enter(Player player) {

this._players.add(player);
}
...

}



Snake and Ladders
public class Player {

public void moveForward(int moves) {
_square.leave(this);
_square = _square.moveAndLand(moves);
_square.enter(this);

}
...

}

public class Square implements ISquare {
public ISquare moveAndLand(int moves) {

return _game.findSquare(position, moves).landHereOrGoHome();
}
...

}

public class Game {
public ISquare findSquare(...) {

…
return this.getSquare(target);

}
...

}



Design Principles
and Concepts



Design Principles
● The design process should not suffer from 

‘tunnel vision.’
● The design should be traceable to the 

analysis model.
● The design should not reinvent the wheel.
● The design should “minimize the intellectual 

distance” between the software and the 
problem as it exists in the real world.

● The design should exhibit uniformity and 
integration.



Design Principles
● The design should be structured to 

accommodate change.
● The design should be structured to degrade 

gently, even when aberrant data, events, or 
operating conditions are encountered.

● Design is not coding, coding is not design.
● The design should be assessed for quality 

as it is being created, not after the fact.
● The design should be reviewed to minimize 

conceptual (semantic) errors.



Fundamental Concepts
● Abstraction - data, procedure, control
● Informal Hiding - controlled interfaces
● Refinement - elaboration of abstraction
● Architecture - overall structure
● Modularity - division into modules
● Patterns - proven solutions
● Stepwise Refinement - sequence of decomposition
● Refactoring - process of improvement
● Structural Partitioning - vertical or horizontal
● Functional independence - single-minded function 

and low coupling



Prototype

● Build a prototype to verify technical 
assumptions

● Can be good way to iterate vague 
requirements

● Prototype != Beta or Production code
○ Misconception that the product is close to finished
○ Too many shortcuts
○ Rewrite for quality

● Not same as Agile Methodology



Circle Back

● Validate that the requirements are met.
○ Functional
○ Non-functional
○ Usability

● If users cannot extract value from your 
product, no sale.



Simplified Seven Design Principles

1. The Reason It All Exists - to provide value to 
its users

2. KISS (Keep It Simple, Stupid!)
3. Maintain the Vision - Clear Vision
4. What You Produce, Others Will Consume
5. Be Open to the Future
6. Plan Ahead for Reuse
7. Think



References

● Snake and Ladder example - Object-
Oriented Design Principles - Oscar 
Nierstrasz (http://scg.unibe.
ch/download/lectures/p2/P2-02-OODesign.
pdf)


