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Housekeeping

e Please turn in your High Level Product
Specification

e No classes on holiday next Monday 28th and
Tuesday 29th

e Friday’s are not optional

e Video Crews in this Thursday and Friday,
24th and 25th




Roadmap

Review

e Persona, Value Creation, Strategy

e Software Design

This Week

e Finish Super High Level Business Plan
e High Level Prototype Plan

Moving Forwards

e Executive Summary
e Prototype




Now that you have
Use Cases...

What next?
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Objective

e On Time

e High Quality

e Meets user/persona needs - product must
allow user/persona to realize value
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Software Project Management

e Someone must manage the activities:
o What needs to be done?
o When? - Scheduling
o Who?
m Assignment
Resource management
Coordination - Team building
Morale management
Administrative




Simplified Project Management

Determine Tasks

Order Tasks

Estimate Tasks

Estimate Productivity
Calculate Time Required
Estimate Available Time
Create Schedule

Track Progress
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Software Design

e Coding I= Software Design
e Need experience

o Design Patterns: Elements of Reusable Object-
Oriented Software
o Use parts of another project as template

e Very difficult, even if you have experience

Desion Patterns
Elements of Regsable
Ohject( ){r.umlt‘d-'Si)"l\\m;r:




Data Model

Design Model and its Elements




Where to start...

Analyze

e Understand how requirements translate to
technology from the user/persona’s
perspective.

e Do not rely just on your perspective.

e Break up components at the high level.

e Mock up UI.




Ul Storyboard
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Ul Flow Diagram (Storyboard)




Create Ul Mockups/Wireframes
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Snakes and Ladders
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Snake and Ladders Rules

e Players - 2-4 players move tokens around the
board

e Moving - players must role a die, move
specified number of spaces (1-6), and perform
any actions

e Ladders - if a player lands on a ladder, they
climb to the top of the ladder

e Snakes - if a player lands on a snake, they must
sllde down the snake to the bottom _ p—
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Determine Components
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Data Modelling

e |dentify Data Objects and Attributes needed
to support Use Cases

e Examine them independent of processing

e Abstract objects at the level of
users/personas
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Snake and Ladders - Data Objects

e Game Board

Squares
o Start

o Finish
Ladders
Snakes
Players

Dice
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Determine Relationships
and Interactions
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Class Based Modelling

Expand Data Model to Class Model

Objects
Operations
Relationships
Collaboration
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Snake and Ladders

Square

N~

Start Finish Snake Ladder

|s Snake a reverse Ladder?
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Responsibilities

e The responsibility should be generic as possible

e System logic should be distributed in a way to best
solve the problem at hand

e Information and related behavior should reside in the
same class

e Information regarding a specific item should only exist in
a single class and spread across multiple classes.

e \When applicable, responsibilities can be shared among
related classes




Snake and Ladders -
Responsibilities

Game - keeps track of the state

Square - keeps track of player on it

Start - can hold multiple players

Finish - knows its the winning square and game
finish

Snake - sends a player down

e | adder - sends a player up

e Player - keeps track of the location, moves
along the square

Die - generates random _number.betw
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Collaboration

Classes can

e manipulate its own data
e collaborate with other classes

Collaboration identifies relationships

e is-part-of relationship
e has-knowledge-of relationship
e depends-upon relationship
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Interfaces

e \When defining relationships or collaboration,
use interfaces

e Should be well defined
e Help insure modular design

e Use Abstract Base Class if interfaces are not
available




Snake and Ladders

public class Game {
private List<ISquare> squares;
private Queue<Player> players;
private Player _winner;
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Snake and Ladders

public class Player {
private String _name;
private ISquare square;
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Snake and Ladders

public class Square implements ISquare {
protected int _position;
protected Game game;
private Player player;
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Snake and Ladders

public class Square implements ISquare {
private Player _player;
public boolean isOccupied() {
return this._player != null;
}
public void enter(Player player) {
this._player = player;

}

public void leave(Player player) {
this._player = null;




Snake and Ladders

public interface ISquare {
public int position();
public ISquare moveAndLand(int moves);
public boolean isFirstSquare();
public boolean isLastSquare();
public void enter(Player player);
public void leave(Player player);
public boolean isOccupied();
public ISquare landHereOrGoHome();




Snake and Ladders

public class Square implements ISquare {
private Player _player;
public void enter(Player player) {
this. _player = player;

}

public class StartSquare extends Square {
private List<Player> players;

public void enter(Player player) {
this. _players.add(player);




Snake and Ladders

public class Player {
public void moveForward(int moves) {
_square.leave(this);
_square = _square.moveAndLand(moves);
_square.enter(this);

} public class Square implements ISquare {
public ISquare moveAndLand(int moves) {
} return _game.findSquare(position, moves).landHereOrGoHom:
} public class Game {
public ISquare findSquare(...) {

return this.etSquare target);




Design Principles
and Concepts
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Design Principles

e The design process should not suffer from

‘tunnel vision.’

e The design should be traceable to the

analysis model.
e The design should not reinvent the w
e The design should “minimize the inte
distance” between the software and t
problem as it exists in the real world.

. Aaye -~ -
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The design should exhibit uniformity and________



Design Principles

e The design should be structured to
accommodate change.

e The design should be structured to degrade
gently, even when aberrant data, events, or
operating conditions are encountered.

e Design is not coding, coding is not design.

e The design should be assessed for quality
as it is being created, not after the fact.

e The design should be reviewed to minimize
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Fundamental Concepts

Abstraction - data, procedure, control

Informal Hiding - controlled interfaces

Refinement - elaboration of abstraction
Architecture - overall structure

Modularity - division into modules

Patterns - proven solutions

Stepwise Refinement - sequence of decomposition
Refactoring - process of improvement

Structural Partitioning - vertical or horizontal




Prototype

e Build a prototype to verify technical
assumptions

e Can be good way to iterate vague
requirements

e Prototype != Beta or Production code
o Misconception that the product is close to finished
o Too many shortcuts
o Rewrite for quality

e Not same as Agile Methodology

s s




Circle Back

e \/alidate that the requirements are met.
o Functional
o Non-functional
o Usability

e |f users cannot extract value from your
product, no sale.
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Simplified Seven Design Principles

1. The Reason It All Exists - to provide value to
Its users

KISS (Keep It Simple, Stupid!)

Maintain the Vision - Clear Vision

What You Produce, Others Will Consume
Be Open to the Future

Plan Ahead for Reuse

Think

NOoOOROWDN
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References

e Snake and Ladder example - Object-
Oriented Design Principles - Oscar
Nierstrasz (http://scg.unibe.
ch/download/lectures/p2/P2-02-O0Design.
pdf)
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