
Software Development
Life Cycle

Lecture 6
GSL Peru 2014



Housekeeping

● Friday’s are not optional.



Announcements



SDLC
Software Development Life Cycle



Software Development Life Cycle

Source: sdlc.wc



Waterfall Model

❖ Sequential design process
➢ Scheduled stages of 

development in strict order
❖ Does not accommodate changes 

to requirements during project
❖ Integration done at the end



Breakdown of Process

❖ Step 1: Requirements
➢ Description of product/system behavior
➢ Includes the use cases/interactions between the 

users and product
➢ Establishes what the product should and should not 

do (functional and non-functional)



Requirements Documents

● Business Requirements Document (BRD)
● Marketing Requirements Document (MRD)
● Functional Requirements Document (FRD)
● Product Requirements Document (PRD)



Engineering Requirements 
Documents

● User Interface Requirements Document 
(UIRD)

● Interface Requirements Document
● Technical Requirements Document (TRD)
● Design Requirements Document
● Engineering Requirements Document
● Development Requirements Document



Breakdown of Process

❖ Step 2: Design
➢ Create the specification of the software architecture
➢ Low-level algorithm design and high-level 

architecture design
➢ Things to consider with software design:

■ Compatibility
■ Extensibility
■ Maintainability
■ Modularity
■ Performance
■ Scalability



Design Documents

● Data Design
● Architecture Design
● Interface Design
● Procedure Design



Breakdown of Process

❖ Step 3: Implementation
➢ Constructing or coding based on the design from 

step 2, resulting in software
➢ Keep in mind how to create good software (future 

lecture material)
➢ Take into account user-knowledge

■ Product is for the users--implement a product 
suitable for their needs!



Breakdown of Process

❖ Step 4: Verification
➢ Consists of testing and debugging
➢ Don’t rely on Quality Assurance (QA) to find all the 

product defects!
➢ Developers should test their code.
➢ QA will not have time to test all of the features on all 

of the platform.  The hours required to test manually 
will be 100+ years depending on complexity

➢ QA uses 80/20 rule to test.



Breakdown of Process

❖ Step 5: Maintenance
➢ Future modifications to remove issues, improve 

performance, etc.
➢ Have a method for users to report bugs or request 

modifications
➢ If defects are found here, it is very time consuming 

and distruptive to fix.



Additional Facts

● Design up front model - need to know all the 
facts ahead of time.  Cannot learn as you go.

● Can fall apart when all the facts are not 
available ahead of time or when requirements 
change

● Requirements defect that is left until 
construction or maintenance will cost 50-200 
times as much to fix as at requirements stage.

● More than source code for documentation.



Agile Model

❖ Assess direction through 
development process

❖ Continuous replanning
❖ Iterative and incremental

➢ Repetition of work 
cycles and product 
yield analysis

Source: agilemethodology.org, 
sdc.net.au



12 Principles of Agile Manifesto

1. Customer Satisfaction from rapid delivery of 
useful software

2. Welcome to changes in requirements, even 
later in the development process

3. Working software is delivered frequently 
(weeks rather than months)

4. Close, daily cooperation between business-
side and developers Beck, Kent 2001



12 Principles of Agile Manifesto

5. Projects are built around motivated 
individuals, who should be trusted

6. Face-to-face conversation is the best form of 
communication (co-location)

7. Working software is the measure of progress
8. Sustainable development at a constant pace
9. Continuous attention to technical excellence 

and good software Beck, Kent 2001



12 Principles of Agile Manifesto

10. Simplicity—the art of maximizing the amount 
of work not done—is essential

11. Self-organizing teams
12. Regular adaptation to changing 

circumstances

Beck, Kent 2001



Additional Facts

● Short, adaptive cycles
● Criticized for code focus and lack of 

documentation
● Inefficient in large organization
● Adapted to processes outside of software



Scrum



Scrum

● Focus on common goal
● Flexible, quick delivery
● Requirements can change (“requirements 

churn”)



Roles

● Product Owner - represent stakeholders, 
creates backlog items from user stories

● Development Team - responsible for 
producing potential shippable increments

● Scrum Master - enforcer of the scrum rules 
and removes obstacles from the team to 
deliver the product goals



Sprints

● Basic unit of development time
● “timeboxed” effort - scope based on time
● Duration is fixed from 2 weeks to 1 month
● Product must be in working condition at the 

end of the sprint. i.e. integrated, fully tested, 
end-user documented, and potentially 
shippable



Meetings
● Sprint planning meeting
● Daily Scrum meeting (status)

○ 15 mins/standing
○ same location/same time
○ development status

■ What have you done since yesterday?
■ What are you planning to do today?
■ Any impediments/stumbling blocks?

● End meeting
○ Sprint Review
○ Sprint Retrospective



Other terms

● Product backlog
● Sprint backlog
● Product increment
● Burn down chart



Overview
❖ Flexible and holistic product development 

strategy
❖ Recognizes that customers can change their 

mind about what they want or need
➢ Focus is on quick delivery and responses to change
➢ Empirical feedback
➢ Team self-management

Source: agilemethodology.org



Extreme Programming (XP)

Source: James Shore 2007

❖ XP teams performed 
analysis, design, coding, 
and testing every day

❖ Test-driven development
❖ Short iterations provided 

structure
➢ Iteration started with 

planning, ended with 
product demo



Pair Programming

What is Pair Programming?

Pair programming is an agile software 
development technique where two 
programmers work together at one 
workstation. One programmer writes code 
(driver) while the other reviews each line 
(observer). Both programmers switch roles 
frequently.



Pair Programming
Benefits

Looking at benefits in the following categories:

❖ Economics
❖ Design Quality
❖ Satisfaction
❖ Learning
❖ Team Building & Communication



Pair Programming Benefits
Economics

❖ Takes about 15% more time than working 
individually, but defects are 15% less

❖ Costs and quality assurance affect expenses
➢ Reduce defects in program => expenses decrease

❖ Example: IBM spent $250 million repairing 
and fixing 30,000 customer-reported issues
➢ Defects could have been reduced with pair 

programming



Pair Programming Benefits
Design Quality

❖ Greater potential for more diverse solutions
➢ Programmers bring different prior backgrounds and 

experiences
➢ Programmers have different perspectives of the 

problems presented
➢ Programmers have different functional roles

■ Coding vs. Reviewing
❖ Chances of selecting a poor method 

decrease with two programmers rather than 
one



Pair Programming Benefits
Satisfaction

❖ Online surveys show…
➢ 96% of pair programmers enjoy pair programming 

more than working alone
➢ 95% of pair programmers are more confident in their 

code when working together



Pair Programming Benefits
Learning

❖ Constant sharing of knowledge between the 
programmers
➢ Tips on coding rules
➢ Tips on design skills

❖ Providing feedback increases knowledge for 
the reviewer as well, not only the coder
➢ Programmer becomes more aware of monitoring 

code



Pair Programming Benefits
Team Building & Communication

❖ Programmers in a team naturally share 
problems and solutions quicker with pair 
programming
➢ Time is saved
➢ Hidden agendas amongst team members are 

avoided
❖ Communication is made easier

➢ Information flow in the team increases



Waterfall vs. Agile Model
Pros and Cons

Pros
❖ Waterfall Model

➢ Strong documentation
➢ Clients know what to expect
➢ Meticulous records => easier 

to improve in future
❖ Agile Model

➢ Changes can be made after 
initial planning

➢ Testing and feedback at the 
end of each run

➢ Product can be launched at 
the end of any cycle

Cons
❖ Waterfall Model

➢ Initial requirements that can’t 
be changed

➢ Testing only at the end
➢ Doesn’t take into account 

client’s evolving needs
❖ Agile Model

➢ Project can easily become a 
constant run of code cycles
■ Delayed & over-budget

➢ No initial definite plan can 
result in very different end 
product



Waterfall vs. Agile Model
When to use Which

Waterfall Model
❖ Clear picture of what the 

final product should be
❖ Clients don’t have ability 

to change project scope 
after project has begun

❖ Definition, not speed, is 
key to success

Agile Model
❖ Unclear picture of what the 

final product should be
❖ Rapid production is of 

importance
❖ Clients can change the 

scope of project
❖ Product is for an industry 

with rapidly changing 
standards



Resources

● Wikipedia


