
Nigeria Summer 2012

Lecture 6– Objects

Accelerating
Information Technology

Innovation

http://aiti.mit.edu

The History of Objects

 Objects weren't always supported by
programming languages

 Idea first originated at MIT in the 1960s
and was officially incorporated in a few
languages in the same decade

 OOP (Object Oriented Programming) has
now become a core feature of nearly all
languages

Object Oriented Programming
(OOP)

 A certain style of computer programming

 Centered around data structures called
“objects”

 Many pros and cons, but almost every
language and decent sized project uses it

What is an Object?

 A standard way to organize information (data)

 Holds similar information about a single “thing” in one place

 For example, in a soccer tournament, a “tournament” object could
hold:

 A list of teams and points of teams

 The name of the tournament

 A list of stadiums

 A procedure to make a new game by picking the teams and stadium

 In fact, all the data structures you've learned as well as procedures
are also objects (lists, strings, dictionaries)

original_string = ' some text ' #instantiate a string object

#original_string = str(' some text ') is equivalent to the above line

remove leading and trailing whitespace by calling string's strip method

string1 = original_string.strip()

make uppercase

string2 = string1.upper()

print string2 #SOME TEXT

make lowercase

string2.lower() == string1

True

The String Object

a = 5

b = a

a = 4

print b # 5

c = [5]

d = c # point to the same object as c

c[0] = 8

print d[0] # 8

e = [2]

f = e[:] # make a copy of e

e[0] = 6

print f[0] # 2

Pointers/References

Defining a Class

class Car():

wheels = 4

print Car.wheels #4

myCar = Car() #instantiation

print myCar.wheels #4

Car.wheels = 5 # change the class variable

print Car.wheels #5

print myCar.wheels #5

The Constructor

class Car():

wheels = 4

def __init__(self, color):

self.color = color

#print Car.color <-- AttributeError: class Car
has no attribute 'color'

myCar = Car("red")

print myCar.color # red

Adding Procedures

class Car():

wheels = 4

def __init__(self, color):

self.color = color

def fade(self):

self.color = self.color + "ish"

myCar = Car("red")

print myCar.color #red

myCar.fade()

print myCar.color #redish

Static Procedures

class Car():

wheels = 4

def __init__(self, color):

self.color = color

def fade(self):

self.color = self.color + "ish"

@staticmethod

def isOld(miles):

class Car():

wheels = 4

def __init__(self, color, horsepower):

self.color = color

self.engine = self.Engine(horsepower)

class Engine():

def __init__(self, horsepower):

self.horsepower = horsepower

def getWatts(self):

return self.horsepower * 745.7

myCar = Car('red', 400)

print myCar.engine.getWatts() #298280.0

Inner Classes

Instance vs Class Variables

class Person():

eyes = 2

fingers = 10

def __init__(self, name, age):

self.name = name

self.age = age

def setFingers(self):

self.fingers = 9

def is_old(self):

return self.age > 40

(person1, person2) =
Person('Larry', 70),
Person('Doug', 20)

print person1.eyes, person2.eyes
#2 2

Person.eyes = 3

print person1.eyes #3 because
person1 doesn't own it's own
eyes variable

print person2.eyes #3 because
person2 doesn't own it's own
eyes variable

print person1.fingers, person2.fingers #10 10

person1.fingers = 9

print person1.fingers #9 because person1 owns it's own fingers variable
and it was changed

print person2.fingers #10 because person2's fingers variable wasn't
changed

####

Person.age = 5

print person1.age #70 because person1 has it's own age variable

del person1.age # delete person1's age variable

print person1.age #5

Instance vs Class Variables

