
Accelerating 

Information Technology 

Innovation

http://aiti.mit.edu

Nigeria Summer 2012

Lecture DJ02 – Django Database Intro



Database Interaction



Managers

Manager is a class

It's the interface between the database 

and django

Various methods, including filter(), 

exclude(), and order_by()
Also has get_query_set, which returns 

a QuerySet object



QuerySets

QuerySet is a class

Does not initiate the database 

interaction until told to

Also has similar methods 

including filter(), exclude(), 

and order_by()



Getting all data

Blog.objects.get_query_set.all()

Shorthand: Blog.objects.all()
Gets all the data associated 

with the model but does NOT 

execute the query



Filtering Data

exact: gets an exact match

 Blog.objects.filter(title__exact='cool')
 Blog.objects.filter(title='cool') #__exact is implied

contains: find if a match is contained inside a field

 Blog.objects.filter(blog_text__contains='cool')
icontains: case insensitive contains

 Blog.objects.filter(author__icontains='smith')
More here: 

https://docs.djangoproject.com/en/1.3/ref/models/querysets/#field-

lookups



Ordering

Blog.objects.order_by('-pub_date', 'title')
 First orders by pub_date in descending order 

(hence the negative sign). If there are pub_dates
that are equivalent, then title is ordered in 

ascending order.



Values

Blog.objects.values()
 Returns a ValueQuerySet, which returns a list of 

dictionaries when executed

Blog.objects.values('title', 'body')
 Returns only the fields title and body in the 

dictionary



Distinct

Blog.objects.distinct()
 If there are any duplicate rows, only one is 

returned

 This will rarely work like this, because you often 

will already have a distinct field, like an id

 Blog.objects.values('title', 
'body').distinct()

 This will get all unique title-body combinations

 Notice the chaining here



Slicing

Blog.objects.all()[:5]
Gets the first 5 blog objects

The limit happens in the sql query
 ex: SELECT * FROM users LIMIT 5



Get

Gets a single row

raises MultipleObjectsReturned if more 

than one object was found. The 

MultipleObjectsReturned exception is an 

attribute of the model class.

raises a DoesNotExist exception if an object 

wasn't found for the given parameters. This 

exception is also an attribute of the model
class.



Get continued

Blog.objects.get(id=5)
 Returns a single QuerySet if there is a row 

that exists, otherwise an error ensues

Blog.objects.filter(id=5)[0]
 Similar, except no exceptions are thrown



When are QuerySets Evaluated?

Iteration
for e in Entry.objects.all():

print e.headline

Boolean
if Entry.objects.filter(headline="Test"):

print "There is at least one Entry with the 
headline Test"



Lookups that span relationships

Blog.objects.filter(comment__title__con
tains='Lennon')
 Retrieves all Blog objects with a comment 

whose title contains 'Lennon'



Other Syntax



URLs

urlpatterns = patterns('',
url(r'^$', 'blog.views.home'),
url(r'^list/(\d+)?$', 'blog.views.blog_list'),
url(r'^search/(.*)$', 'blog.views.blog_search'),
url(r'^(detail|info)/(?P<id>\d+)/((?P<showComments>.*)/) ?$', 

'blog.views.blog_detail'),
)



Views

def store_list(request, limit=100):
store_list = Store.objects.all()[:limit]
print store_list # [<Store: phones>, <Store: food>]
return HttpResponse('going to give a list')


