

MIT AITI
Python Software Development

Lab 3: Data Structures

We have demonstrated in lecture how lists, tuples, and dictionaries each provide a valuable way
to store information. Through the activities in this lab, you will have the opportunity to explore
the capabilities and limitations of these data structures. At the conclusion of this lab, you will
know how to choose the right data structure for your software development needs!

1. Messi and Xavi, the stars of Lecture 4, have just finished up a long afternoon of football and

decide to head to the grocery store. They have a list of groceries that they would like to pick

up at (Shoprite). Their list, groceries, is initialized as follows:

groceries = [‘bananas’,’strawberries’,’apples’,’bread’]

a. They want to celebrate their victory and add champagne to the end of their original

grocery list. Write the code to modify groceries accordingly.

b. Messi decides he doesn’t need bread. Write the code to remove this from

groceries.

c. The store has 26 aisles, labeled ‘a’, ‘b’, ‘c’, … ‘z’ from the left side of the store to the
‘right’ (apples are found in the ‘a’ aisle, strawberries in the ‘s’ aisle, etc.). What
operation could Messi perform on the list to make it easier for him to find the items
he needs in the store? Write the code below.

2. The store wants to design a catalog of all items in stock and their prices.
a. What data structure would you choose to store this information and why?

b. Prices at the store are shown in the table below; write code to store this information
in the data structure you chose in part (a).

c. The price of strawberries goes up in the winter to 1500 ; how would you modify the
price in your data structure?

d. Soccer players insisted on more protein options for their diets, so the store decided
to sell chicken at a rate of 1800. Write the code to add this information to the data
structure from part (c).

 Item Price

Apples 100

Bananas 200

Bread 250

Carrots 300

Champagne 1000

Strawberries 1500

3. Shoprite changes some of its items over time, but it always carries those in the list above.

The CEO of Shoprite Company wants a list of items that their stores always carry so they

can ensure that these items are available for customers to buy at all times.

a. Describe the data structure that would best fit this data.

b. Given the data structure chosen in part a, create the collection of items that will be
sent to the CEO.

always_in_stock = #your code here

The CEO is puzzled because one of his stores sent him two lists with different items. It turns
out that the store sent in one list, but forgot some of the items, so they sent in a second list.
The CEO thinks it would be much easier to have all these items on ONE list, but he is unsure
how he can link two tuples.

c. Given your knowledge of tuples, suggest a way that the CEO can combine the two
lists.

4. Messi and Xavi are outraged at the prices in this store; they want to check around at a few

other stores. For example, apples cost SOME_PRICE at the current store and
SOME_LOWER_PRICE at another store.

a. What data structure could they use to store different market prices associated with all
the items on their grocery list?

b. Given a sorted list of prices (e.g., $0.50, $1.25, $1.50), design a function that will
insert another price into the list. Maintain the price order without re-sorting the entire
list (hint: use binary search).

defbinary_insert(new_float,some_list_of_floats):

 #modifies the input list to include the new_float

 return

c. Write a function that returns the minimum amount of money that Messi and Xavi will
have to spend on their grocery list.

def min_cost(grocery_list,item_to_price_list_dict):
#grocery_list is a list of strings (item names)

#item_to_price_list_dict is a dictionary with key-value

 # pairs as follows: the item name (strings) is the key
 # andthe list of prices (floats) at different grocery is

 # the value

return

5. Challenge Problem: Lists and Queues

Messi and Xavi lost their 2011 Champions League trophy while they were out celebrating
last night. Now, they have to search through the streets of Barcelona to get it back. Starting
from Bus Stop A (Messi’s home) they want to check all the bus stops throughout the city.

An efficient search strategy will maintain one data structure for nodes that have already

been visited (seen) and another for the nodes to be visited (to_visit). You are given a

dictionary that maps each bus stop name (strings) to the list of strings representing adjacent
bus stops. For example, the bus network in Figure 1 would be represented with the
following adjacency dictionary:

adjacency_dict =

{‘A’:[‘B’,’C’],’B’:[‘A’,’D’,’E’],’C’:[‘A’,‘F’,’E’],’D’:[‘B’],’E’:[‘B

’],’F’:[‘C’]}

Figure 1: Sample layout of bus stops and connections with trophy at Bus Stop F

Messiand Xavi propose slightly different variations on the following strategy:

At the current bus stop, check for the trophy. If it is there, the quest ends (return)!

Otherwise,remove the current bus stop from to_visit. Get the list of adjacent bus stops

from adjacency_dict. Add each adjacent bus stop that is not in seen to the end

ofto_visit. At this point:

 Messi proposes that they proceed to the first item in to_visit.

 Xavi proposes that they proceed to the last item in to_visit.

a. What data structure should Messi and Xavi use to store whether or not a node has been

seen (already visited in the search)? How does this data structure minimize lookup

time?

b. Suppose Messi and Xavi decide to use lists to maintain the set of nodes to_visit.

Whose algorithm will find the trophy fastest, and why?

A

C B

E D F

c. Examine the python documentation on queues. Whose strategy would benefit most from

using a queue in their to_visit data structure, and why?

Notes:

See documentation on queues at: http://docs.python.org/tutorial/datastructures.html#using-lists-
as-queues)

Image credit for trophy picture in Figure 1:
Getty Images, http://www.uefa.com/uefachampionsleague/news/newsid=1633420.html

