
MIT Africa Information Technology Initiative 1 

MIT AITI Mobile Application 

Development in Java 

Nigeria, Summer 2012  

Lab 06: Methods 

 

Read instructions carefully! Following instructions is part of the grade for this lab. Please do not 

hesitate to ask any of the team members for clarifications. Create a new project named “lab06”.  

This lab will continue developing Lab 4 (Arrays) using methods. You can copy your code from lab04 into 

your new project and edit that file for this lab. 

1. (2 points) Move your code from Lab 4, parts 2-5 and 7 into the following methods: 

a. public static void printScores(double[] scores) 

Print out each score value in scores. 

b. public static double aveScore(double[] scores) 

Returns the average score. 

c. public static double maxScore(double[] scores) 

Returns the maximum score. 

d. public static char letterGrade(double score) 

Returns the letter grade character for a score. 

(This can be useful for parts (e) and (f)) 

e. public static void printGrades(double[] scores) 

Print out the letter grade for each score.  

f. public static void histogram(double[] scores) 

Prints out a histogram plot of the scores. 

g. public static void selectionSort(double[] scores) 

Sort the array of scores in increasing order using the selection sort. 



MIT Africa Information Technology Initiative 2 

  

 

 

2. (4 points) Write a new method: 

public static double[] getScores() 

This method will ask the user to input an array of test scores. The test scores should be between 

0.0 and 100.0 inclusive.  You should first read an integer from the user and use the value to 

allocate the array.  Then ask the user to enter the individual values. If the user enters a value 

outside of the legal range of test scores, you should prompt the user for another score and don’t 

record the invalid score.  After the array is completely specified, print out the array.  Here is an 

example session (make sure you follow this format exactly): 

Enter number of doubles in the array: 6 

Enter the doubles, each on a separate line:  

46.2   

174.2 

Score not between 0.0 and 100.0 inclusive, try again… 

74.2 

91.3 

90.5 

83.3 

72.6   

Input array: [46.2, 74.2, 91.3, 90.5, 83.3, 72.6] 

 

3. (2 points) Use the methods you wrote in Steps 1 and 2 to ask the user to input an array of 

doubles.  Then print each of the following: the unsorted array, average, maximum, histogram, 

and sorted array.  Place your method calls in the main method of your Java file. 

 

4. (3 points) Add a method merge that takes two arrays as input and outputs a new array that 

contains their combined elements: 

public static double[] merge(double[] a, double[] b) 

Have the user enter another array of doubles and merge this new array with the array input by 

the user in Step 3. 

 

5.  (8 points) We will now turn to the problem of searching for a particular value in an array.  We 

call the value for which we are searching the key.  The simplest method is to search for the key 



MIT Africa Information Technology Initiative 3 

by examining each element of the array.  For each index, we compare the element to the key.  If 

the current element is equal to the key, we can stop the search successfully.  This is called Linear 

Search and in the worst case it requires N comparison operations, where N is the size of the 

array.   

Now, consider the case where the array is sorted.  We are going to develop a much faster 

algorithm for searching a sorted array.  The algorithm we are going to use is called Binary 

Search.  Here is how it works for an array that is sorted in increasing order.   

It begins by comparing the element at the middle position of the array to the key.  Consider the 

following three cases: 

 If the key is less than the middle element, we only need to search the first half of the 

array using the binary search algorithm. 

 If the key is equal to the middle element, the search ends with a match. 

 If the key is greater than the middle element, we only need to search the second half of 

the array using the binary search algorithm. 

At this point, if we did not find the key in the middle position of the array, we have reduced the 

number of elements we need to search by half (the first half of the array or the second half of 

the array).  We can then use the above technique to search for the element in the appropriate 

half of the array.  And so on…  As you can see, we can code this using recursion.  We repeatedly 

reduce the array we need to search by half at each step of the above technique. 

Using this description, complete an implementation of a method that performs binary search on 

an array that is sorted in increasing order: 

public static boolean binarySearch(double key, double[] array) 

This method will return true if the key is found and otherwise return false.  Of course, you 

cannot use any searching methods provided by the Java library.  Your implementation must 

support arrays of arbitrary size.  You should not have to create any new arrays in your 

implementation. 

Test your implementation by appending a call to binarySearch() at the end of your main 

method (after the call to merge).  Ask the user for a key and search for the key in the merged 

array.  Inform the user whether the key was found.  You may need more than one method in 

your implementation, but the binarySearch() method should be the only one called from 

your main method for this step. 

In the worst case, binary search requires log2N comparisons.  In the comments for your binary 

search method(s), explain why this is true.  Be as detailed and mathematically rigorous as 

possible.   



MIT Africa Information Technology Initiative 4 

 

Challenge problem: 

Write a method that will replace all occurrences of a word in a string with another word. 
Your method will take in two arguments, the first being a String to be replaced, and the 
second the replacement String. To make the problem challenging, the ONLY method you 

should use from the String class is the ‘charAt’ method. 

We will provide a list of delimiters, that is, characters that can legally come before or after a 
word.  For example, ‘ ‘ (space), ‘,’ (comma), and ‘.’ (period) are delimiters, e.g. “However, he 
decided to stop.” 
 

As an example, given the sentence “The ants are crossing the road”, your method should be able 
to replace the word “ants” with another word, like “pigs.” 

But if the sentence is: 

“The ants are crawling down my pants”, your method should replace the word “ants” with 
another word, but it should NOT replace the word “ants” in the word “pants.” 

Hint: create your own methods to help you solve this problem. 

 


