
Lecture 12: Exceptions

Accelerating Information Technology Innovation

http://aiti.mit.edu

AITI Nigeria Summer 2012

University of Lagos.

http://aiti.mit.edu/

Agenda

• What is an exception

• Some exception terminology

• Why we use exceptions

• How to cause an exception

• How to deal with an exception

• About checked and unchecked exceptions

• Some example Java exceptions

• How to write your own exception

What is an exception?

• An exception or exceptional event is an event

that occurs during the execution of a program

that disrupts the normal flow of instructions

• The following will cause exceptions:

– Accessing an out-of-bounds array element

– Writing into a read-only file

– Trying to read beyond the end of a file

– Sending illegal arguments to a method

– Performing illegal arithmetic (e.g divide by 0)

– Hardware failures

Exception Terminology

• When an exception occurs, we say it was

thrown or raised

• When an exception is dealt with, we say it

is handled or caught

• The block of code that deals with

exceptions is known as an exception

handler

Why Use Exceptions?

• Compilation cannot find all errors

• To separate error handling code from
regular code

– Code clarity (debugging, teamwork, etc.)

– Worry about handling error elsewhere

• To separate error detection, reporting, and
handling

• To group and differentiate error types

– Write error handlers that handle very specific
exceptions

Decoding Exception Messages

public class ArrayExceptionExample {

public static void main(String args[]) {

String[] names = {“Bilha", “Robert"};

System.out.println(names[2]);

}

}

• The println in the above code causes an exception to be
thrown with the following exception message:

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 2 at

ArrayExceptionExample.main(ArrayExceptionExample.j

ava:4)

Exception Message Format

• Exception messages have the

following format:

[exception class]: [additional description

of exception] at

[class].[method]([file]:[line number]

Exception Messages Example
• Exception message from array example
java.lang.ArrayIndexOutOfBoundsException: 2 at

ArrayExceptionExample.main(ArrayExceptionExample.j
ava:4)

• What is the exception class?

java.lang.ArrayIndexOutOfBoundsException

• Which array index is out of bounds?
2

• What method throws the exception?
ArrayExceptionExample.main

• What file contains the method?
ArrayExceptionExample.java

• What line of the file throws the exception?
4

Throwing Exceptions

• Use the throw statement to throw an
exception
– if (student == null)

throw new NullPointerException();

• throw statement requires a single
argument: a Throwable object

– Throwable objects are instances of any
subclass of the Throwable class

• Include all types of errors and exceptions

• Check the API for a full listing of Throwable objects

Handling Exceptions

• Can use a try-catch block to handle

exceptions that are thrown

try {

// code that might throw exception

}

catch ([Type of Exception] e) {

// what to do if exception is thrown

}

Handling Multiple Exceptions

• Can handle multiple possible exceptions

by multiple successive catch blocks

try {

// code that might throw multiple

// exceptions

}

catch (IOException e) {

// handle IOException

}

catch (ClassNotFoundException e2) {

// handle ClassNotFoundException

}

Finally Block

• Can also use the optional finally block at

the end of the try-catch block

• finally block provides a mechanism to

clean up regardless of what happens

within the try block

– Can be used to close files or to release other

system resources

Try-Catch-Finally Block
try {

// code that might throw exception

}

catch ([Type of Exception] e) {

// what to do if exception is thrown

}

finally {

// statements here always get

// executed, regardless of what

// happens in the try block

}

Unchecked Exceptions
• Unchecked exceptions or RuntimeExceptions

occur within the Java runtime system

• Examples of unchecked exceptions
– arithmetic exceptions (dividing by zero)

– pointer exceptions (trying to access an object’s
members through a null reference)

– indexing exceptions (trying to access an array
element with an index that is too large or too small)

• A method does not have to catch or specify that
it throws unchecked exceptions, although it may

More on Unchecked Exceptions

• Can occur at many points in the program

• Program handling such exceptions would

be cluttered, pointlessly

– Only handle unchecked exceptions at

important program points��

Checked Exceptions

• Those other exceptions that the compiler

can detect easily

• Usually originate in library code

• For example, exceptions occurring during

I/O, SMSLib, Files

• Compiler ensures that:checked exceptions

are:

– caught using try-catch or

– are specified to be passed up to calling

method

Handling Checked Exceptions

• Every method must catch checked exceptions OR specify that it
passes them to the caller (using the throws keyword)

void readFile(String filename) {

try {

FileReader reader = new

FileReader("myfile.txt");

// read from file . . .

} catch (FileNotFoundException e) {

System.out.println("file was not found");

}

} OR

void readFile(String filename) throws
FileNotFoundException {

FileReader reader = new FileReader("myfile.txt");

// read from file . . .

}

Writing Your Own Exceptions

• At least 2 types of exception constructors
exist:

1. Default constructor: No arguments

NullPointerException e = new

NullPointerException();

2. Constructor that has a detailed message:
Has a single String argument

IllegalArgumentExceptione e =

new IllegalArgumentException(“Number must

be positive");

Writing Your Own Exceptions

• Your own exceptions must be a subclass of the Exception class and
have at least the two standard constructors

public class MyCheckedException extends IOException
{

public MyCheckedException() {}

public MyCheckedException(String m){

super(m);}

}

public class MyUncheckedException extends
RuntimeException {

public MyUncheckedException() {}

public MyUncheckedException(String m)
{super(m);}

}

Checked or Unchecked?

• If a user can reasonably be expected to recover

from an exception, make it a checked exception

• If a user cannot do anything to recover from the

exception, make it an unchecked exception

• Judgment call on the part of the designers of the

Java programming language

• http://java.sun.com/docs/books/jls/second_editio

n/html/exceptions.doc.html

http://java.sun.com/docs/books/jls/second_edition/html/exceptions.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/exceptions.doc.html

Exception Class Hierarchy
Exception

RuntimeException IOException

FileNotFoundException

MalformedURLException

SocketException

ArrayIndexOutOfBounds

NullPointerException

etc. etc.

SQLException

IllegalArgumentException

Unchecked Exceptions Checked Exceptions

• Look in the Java API for a full list of exceptions

Lecture Summary

• Exceptions disrupt the normal flow of the

instructions in the program

• Exceptions are handled using a try-catch

or a try-catch-finally block

• A method throws an exception using the

throw statement

• A method does not have to catch or

specify that it throws unchecked

exceptions, although it may

Lecture Summary

• Every method must catch possible

checked exceptions or specify that it may

throw them

• If you write your own exception, it must be

a subclass of the Exception class

– Define the two standard constructors

