
Lecture 10: Interfaces

Accelerating Information Technology Innovation

http://aiti.mit.edu

AITI Nigeria Summer 2012

University of Lagos.

http://aiti.mit.edu/


Interfaces

• An interface in Java is special type

• A class with only method signatures

– Methods have no body

– Can never create an instance of an interface

• Classes can implement the interface

– A contract: the class will implement all the 

methods of an interface definition 

2



Example:

A General Sorting Method

• Create a general sorting method that works on 

Arrays of any class

– Each class implements the MyComparable interface

• The interface allows two objects to be compared

• obj1.compareTo(obj2)

– return 1 if obj1 > obj2

– 0 if obj1 == obj2

– -1 if obj1 < obj2

3



Example: MyComparable

public interface MyComparable {

public int compareTo(Object obj);

}

4



General SelectionSort

public static void sort(MyComparable[] array) {

for (int i = array.length; i >= 1; i--) {

// find the maximum index in the array [0..i-1]

int maxIndex = i - 1;

for (int j = 0; j < i; j++) {

if (array[j].compareTo(array[maxIndex]) == 1) {

maxIndex = j;

}

}

// Replace last element with maximum value indexed at maxIndex

MyComparable temporary = array[i - 1];

array[i - 1] = array[maxIndex];

array[maxIndex] = temporary;

}

}

5



Example: Bank Account

• Compare bank accounts based on balance

• Bank account with greater balance is greater

public class BankAccount implements MyComparable {

private double balance;

…

6



Example: Bank Account
public class BankAccount implements MyComparable

public int compareTo(Object obj) {

if (obj instanceof BankAccount) {

BankAccount ba = (BankAccount)obj;

if (this.balance > ba.balance)

return 1;

else if (this.balance < ba.balance)

return -1;

else return 0;

} else 

//error

}

}

7



Interfaces

• An interface type can be used just like any 

other type

– return type of method

– argument type of method

– array of interface type

• One cannot create an object of an 

interface:

new Comparable();

• All methods of an interface are public

9



Callbacks

• Executable code passed as argument to 

another class

• The class calls the code when an event 

happens

• Examples: 

– Call a method when an SMS message is 

received

– Call a method when a user presses a button 

on a phone (J2ME, Android)

10



Callbacks

11

Your class

Library Code

Constructor:

Register your method

callback method:

Process the event

1 2

Wait for event

Event:

call callback method

Register callback



Interfaces and Callback

• Interface defines the method that will be 

called when the event happens

– Defines the arguments you are passed

• You create a class that implements the 

method

– The code you want to execute when the event 

happens

• Must register the callback first 

12



Callback Example

• A class is implemented that receives an 

SMS message and calls a callback

– Class Name: Gateway.java

– Register callback:
void setInboundNotification(IInboundMessageNotificiation); 

• Interface:
public Interface IInboundMesssageNotification {

public void process(String message);

}

13



Your class: ProcessMessage

public class ProcessMessage 

implements IInboundNotification {

public ProcessMessage() {

Gateway = new Gateway();

gateway.setInboundNotification(this);

}

public void process(String message) {

System.out.println(message);

}

}

14



Differences from Inheritance

• The interface does not define any default 

behavior to inherit

– Empty definitions in the interface

• The methods must be completed by the 

implementing class

• A class can implement multiple interfaces

15



Inheritance or Interface?

• Inheritance:

– When you want to promote code reuse

– A subclass is a refinement of superclass

– A class can only have one superclass

• Interface

– More general contracts than inheritance

• Comparable, Writeable, process message, 

process button-press 

– When you want to define a method contract

– When you cannot find any reuse in the methods

16



Relationships

• has-a: A class has reference to another class

– Ex: ContactList has a list of Contact

• is-a: A class inherits from another class

– Ex: Person is a Contact

• implements: A class defines the methods of an 

Interface

– BankAccount implements Comparable

17


