
Lecture 08:

Static Fields and Methods

Accelerating Information Technology Innovation

http://aiti.mit.edu

AITI Nigeria Summer 2012

University of Lagos.

http://aiti.mit.edu/

What You Know So Far

• Each object has its own copy of methods

and fields:

class BankAccount {

private String name;

private double balance;

public void withdraw(double amount) …

}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

BankAccount zachAcc = new BankAccount(“Zach”, 20);

2

• Each object has its own copy of methods

and fields:

Instance Fields and Methods

3

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

Instance Fields and Methods

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

BankAccount zachAcc = new BankAccount(“Zach”, 20);

System.out.println(mikeAcc.getBalance()); //100

System.out.println(zachAcc.getBalance()); //20

zachAcc.withdraw(19);

System.out.println(mikeAcc.getBalance()); //100

System.out.println(zachAcc.getBalance()); //1

4

Shared Fields

5

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

BankAccount Class

double interestRate

• What if we wanted to make

a field shared among all

objects of a class?

Static Fields

• A given class will only have one copy of

each of its static fields

– This will be shared among all the objects.

• Each static field exists even if no objects

of the class have been created.

• Use the word static to declare a static

field.

Static Fields

• Only one instance of a static field data for

the entire class, not one per instance.

• "static" is a historic keyword from C/C++

Static Fields Example

class BankAccount {

public static double interestRate = 0.02;

}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

BankAccount zachAcc = new BankAccount(“Zach”, 20);

System.out.println(mikeAcc.interestRate); //0.02

System.out.println(BankAccount.interestRate); //0.02

mikeAcc.interestRate = 0.05;

System.out.println(zachAcc.interestRate); //0.05

8

Counting Objects Created

public class BankAccount {

private static int numAccounts = 0;

public BankAccount(String name,

�double balance) {

numAccounts++;

…

}

}

9

Unique ID for Objects

public class BankAccount {

private static int nextAccountNum = 0;

private int accountNum;

public BankAccount(String name,

�double balance) {

accountNum = nextAccountNum++;

…

}

}

10

Array of All Objects Created

public class BankAccount {

private static BankAccount[] accounts =

new BankAccount[100];

private static int nextAccountNum = 0;

public BankAccount(String name,

�double balance) {

accounts[nextAccountNum++] = this;

…

}

}

11

What would happen if we deleted this static modifier?

Array of All Objects Created

public class BankAccount {

private BankAccount[] accounts =

new BankAccount[100];

private static int nextAccountNum = 0;

public BankAccount(String name,

�double balance) {

accounts[nextAccountNum++] = this;

…

}

}

12

More Static Field Examples

Constants used by a class:

– Usually used with final keyword

– Only need to have one per class; don’t need
one in each object:

public static final double TEMP_CONVERT = 1.8;

– If variable TEMP_CONVERT is in class
Temperature, it is invoked by:

double t = Temperature.TEMP_CONVERT * temp;

Instance Methods

• These are what you know so far…

• These define the operations you can

perform on objects of a class.

• Methods typically operate on the instance

(non-static) fields of the class.

– Each object has a “copy” of the method just

as it has copies of the fields.

Static / Class Methods

15

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

BankAccount Class

int numAccounts

• Static methods are shared

by all objects of the class

• One copy for all objects
int getNumAccounts()

Static Methods

To define a class method, add the keyword

static to its definition.

public class BankAccount {

private static int numAccounts = 0;

…

public static int getNumAccounts() {

return numAccounts;

}

}

Calling Static Methods
public class BankAccount {

private static int numAccounts = 0;

…

public static int getNumAccounts() {

return numAccounts;

}

}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

System.out.println(mikeAccount.getNumAccounts()); //1

BankAccount zachAcc = new BankAccount(“Zach”, 20);

System.out.println(mikeAccount.getNumAccounts()); //2

System.out.println(BankAccount.getNumAccounts()); //2

Static Methods

• Static methods do not operate on a

specific instance of their class

• Have access only to static fields and

methods of the class

– Cannot access non-static ones

Static Methods Limitations
public class BankAccount {

private static int nextAccountNum = 0;

private int accountNum;

…

public static int getAccountNum() {

return accountNum;

}

}

Illegal, cannot access non-static field from static method

More Static Methods
• Static methods are also used when you need to

define a method on 2 objects.

public static BankAccount greaterBalance

(BankAccount ba1, BankAccount ba2)

{

if (ba1.balance() >= ba2.balance())

return ba1;

else

return ba2;

}

Static Method Examples

• For methods that use only the arguments and

therefore do not operate on an object
public static double pow(double b, double p)

// Math class, takes b to the p power

• For methods that only need static data fields

• We HAVE TO use the static key word on the main

method in the class that starts the program

– No objects exist yet for the main method to operate on!

The final keyword

• Sometimes you will declare and initialize a

variable with a value that will never

change.

• To prevent any accidental changes, Java

provides you with a way to fix the value of
any variable by using the final keyword

when you declare it.

The final keyword
• We declared PI as

public static double PI = 3.14159;

but this does not prevent changing its value:

MyMath.PI = 999999999;

• We use keyword final to denote a constant:

public static final double PI = 3.14159;

• Once we declare a variable to be final, it's

value can no longer be changed!

Final References
• Consider this final reference to a Point:

public static final Point ORIGIN =

new Point(0,0);

• This prevents changing the reference ORIGIN:

MyMath.ORIGIN = new Point(3, 4);

• BUT! You can still call methods on ORIGIN that

change the state of ORIGIN.

MyMath.ORIGIN.setX(4);

