
Lecture 07:

Object Encapsulation &

References

Accelerating Information Technology Innovation

http://aiti.mit.edu

AITI Nigeria Summer 2012

University of Lagos.

http://aiti.mit.edu/

Data Field Encapsulation

• Sometimes we want variables to be

accessible only within the class itself

– Hide from other classes

• Prevents undesired/incorrect tampering

with variables by methods outside of the

class

– Maintain consistency of state

Without Encapsulation..

class BankAccount {

//Fields

double balance;

String name;

//constructor

BankAccount(String name, double openBalance){

this.name = name;

this.balance = openBalance;

}

}

In Another Class

class AnotherClass {

static void main(String[] args) {

//create bank account

BankAccount mikesAccount =

new BankAccount (“Mike”, 10000000);

//some tampering…

mikesAccount.name = “Zach”;

}

}

This is not good for poor Mike!

Visibility Modifiers

• public – makes methods and data fields

accessible by any other class

• private – makes methods and data

fields accessible only from within its own

class

• (neither) – similar to public but a bit more

restricted

Example, BankAccount

class BankAccount {

//data fields

private double balance;

private String name;

//constructor

BankAccount(String name, double openBalance){

this.name = name;

this.balance = openBalance;

}

}

Common Object Oriented Practices

• Accessors – get the value of a data field

– Sometimes called getters

• Mutators – set the value of a data field

– Sometimes called setters

BankAccount, add accessors

public class BankAccount {

–

–

–

//accessors

public double getBalance(){

return balance;

}

public String getName(){

return name;

}

BankAccount, add mutators

//mutators

public void deposit(double amount){

…

}

public void withdraw (double amount){

…

}
Notice there is no access to the name

data field! Now Zach can’t steal Mike’s

account.

class AnotherClass {

static void main(String[] args) {

//create bank account

BankAccount mikesAccount =

new BankAccount (“Mike”, 5);

//Illegal

mikesAccount.name = “Zach”;

//Illegal

mikesAccount.balance = 100000000;

}

}

Now we are safe!

private Methods

• Methods of a class that are declared

private can only be called within the class.

private void setName(String newName) {

…

}

11

class AnotherClass {

static void main(String[] args) {

//create bank account

BankAccount mikesAccount =

new BankAccount (“Mike”, 5);

//Illegal, private method of Bank Account

mikesAccount.setName(“Zach”);

}

}

Now we are safe!

Accessibility Intuition

• Accessibility modifiers are not used for

safety

– There are ways around them in Java!

• They are used for encapsulation!

– Hide unnecessary state/methods from user of

class

– Prevent access to state to maintain object

consistency

13

Consistency Example

class Family {

Person[] males;

Person[] females;

//want totalMembers = males + females

int totalMembers = 0;

…

public void addFemale(Person person)…

public void addMale(Person person)…

}

14

Inconsistent

class AnotherClass {

void method() {

Family myFam = new Family();

myFam.addMale(new Person(“Mike”));

myFam.addFemale(new Person(“Mary”));

myFam.totalMembers = 10;

//now myFam is inconsistent!

}

}

15

A Better Way!
class Family {

private Person[] males;

private Person[] females;

//want totalMembers = males + females

private int totalMembers = 0;

…

public void addFemale(Person person) {

females[…] = person;

totalMembers++;

}

}

16

Object References

• An object variable is really a reference to

the object.

– A pointer is a good way of thinking about it

• You must “dereference” the variable to

access method and fields

– Ex: person.getName(), course.number

References
• You can have 2 variables reference the

same object

Integer a = new Integer(5);

Integer b = a;

//a and b reference the same object

Primitive Argument Passing

• Remember that primitive arguments are

passed by value.

• If you change a primitive argument inside

of a method, the variable in the calling

method will remain unchanged.

Review:

Primitive Argument Passing
public static int meth(int a, int b) {

a = a * 2;

b = b * 3;

return a + b;

}

public static void main(String[] args) {

int x = 5;

int y = 10;

int z = 0;

z = meth(x, y);

//what is the value of x and y?

}

Object Argument Passing

• Object Arguments are pass by reference

– A copy is not made

• Any changes to the object in the method

are visible in the calling method

Object Argument Passing
void changeName(Person person) {

person.setName(“Mike”);

}

public static void main(String[] args) {

Person cory = new Person(“Cory”);

changeName(person);

//what is the value cory.getName()?

}

