
Lecture 2:

Variables and Operators
AITI Nigeria Summer 2012

University of Lagos.

Agenda

• Variables

– Types

– Naming

– Assignment

• Data Types

• Type casting

• Operators

Declaring Variables in Java

• Variables are created by declaring their type and their

name as follows:

• Declaring an integer named “x” :
– int x;

• Declaring a string named “greeting”:
– String greeting;

• Note that we have not assigned values to these

variables

type name;

Java Types: Integer Types

• Integer Types:

– int: Most numbers you will deal with.

– long: Big integers; science, finance,

computing.

– short: Smaller integers. Not as useful.

– byte: Very small integers, useful for small

data.

Java Types: Other Types

• Floating Point (Decimal) Types:

– float: Single-precision decimal numbers

– double: Double-precision decimal numbers.

– Some phone platforms do not support FP.

• String: Letters, words, or sentences.

• boolean: True or false.

• char: Single Latin Alphanumeric

characters

Variable Name Rules

• Variable names (or identifiers) may be any

length, but must start with:

– A letter (a – z, A-Z),

– A dollar sign ($),

– Or, an underscore (_).

• Identifiers cannot contain special operation

symbols like +, -, *, /, &, %, ^, etc.

• Certain reserved keywords in the Java language

are illegal.

– int, double, String, etc.

Naming Variables

• Java is case sensitive

• A rose is not a Rose is not a ROSE

• Choose variable names that are

informative

– Good: int studentExamGrade;

– Bad: int tempvar3931;

• Camel Case”: Start variable names with

lower case and capitalize each word:

– “camelsHaveHumps”.

Review

• Which of the following are valid variable names?

– $amount

– 6tally

– my*Name

– salary

– _score

– first Name

– short

Integer Types

• There are 4 primitive integer types: byte,

short, int, long.

• Each type has a maximum value, based

on its underlying binary representation:

– Bytes: ± 128 (8 bits)

– Short: ± 215 ≈ 32,000 (16 bits)

– Int: ± 231 ≈ 2 billion (32 bits)

– Long: ± 263 ≈ really big (64 bits)

10

Overflow

• What happens when if we store Bill

Gates’s net worth in an int?

– Int: ± 231 ≈ 2 billion (32 bits)

– Bill’s net worth: > $40 billion USD

• Undefined!

11

Floating Point Types

• Initialize doubles as you would write a

decimal number:
– double y = 1.23;

– double w = -3.21e-10; // -3.21x10-10

• Doubles are more precise than Floats, but

may take longer to perform operations.

Floating Point Types

• We must be careful with integer division:
– double z = 1/3; // z = 0.0 … Why?

• When we want to convert one type to another,
we use type casting

• The syntax is as follows:

• Example code:
– double decimalNumber = 1.234;

– int integerPart = (int)decimalNumber;

• Results:
– decimalNumber == 1.234;

– integerPart == 1;

Type Casting

(new type)variable

Boolean Type

• Boolean is a data type that can be used
in situations where there are two
options, either true or false.

• The values true or false are case-
sensitive keywords. Not True or TRUE.

• Booleans will be used later for testing
properties of data.

• Example:
– boolean monsterHungry = true;

– boolean fileOpen = false;

Character Type

• Character is a data type that can be used to

store a single characters such as a letter,

number, punctuation mark, or other symbol.

• Characters are a single letter enclosed in

single quotes.

• Example:

– char firstLetterOfName = 'e' ;

– char myQuestion = '?' ;

String Type
• Strings are not a primitive. They are what’s

called an Object, which we will discuss later.

• Strings are sequences of characters

surrounded by double quotations.

• Strings have a special append operator + that

creates a new String:
– String greeting = “Jam” + “bo”;

– String bigGreeting = greeting + “!”;

Review

• What data types would you use to store

the following types of information?:

– Population of Kenya

– World Population

– Approximation of π

– Open/closed status of a file

– Your name

– First letter of your name

– $237.66

int

long

double

boolean

String

char

double

A Note on Statements

• A statement is a command that causes

something to happen.

• All statements are terminated by semicolons ;

• Declaring a variable is a statement.

• Method (or function) calls are statements:
– System.out.println(“Hello, World”);

• In lecture 4, we’ll learn how to control the

execution flow of statements.

What are Operators?

• Expressions can be combinations of variables,

primitives and operators that result in a value

• Operators are special symbols used for:

- mathematical functions

- assignment statements

- logical comparisons

• Examples with operators:

3 + 5 // uses + operator

14 + 5 – 4 * (5 – 3) // uses +, -, * operators

The Operator Groups

• There are 5 different groups of
operators:

- Arithmetic Operators

- Assignment Operator

- Increment / Decrement Operators

- Relational Operators

- Conditional Operators

• The following slides will explain the
different groups in more detail.

Arithmetic Operators

• Java has the usual 5 arithmetic operators:

– +, -,×, /, %

• Order of operations (or precedence):

1.Parentheses (Brackets)

2.Exponents (Order)

3.Multiplication and Division from left to right

4.Addition and Subtraction from left to right

Order of Operations (Cont’d)

• Example: 10 + 15 / 5;

• The result is different depending on whether
the addition or division is performed first

(10 + 15) / 5 = 5

10 + (15 / 5) = 13

Without parentheses, Java will choose the
second case

• You should be explicit and use parentheses
to avoid confusion

Integer Division

• In the previous example, we were lucky
that (10 + 15) / 5 gives an exact

integer answer (5).

• But what if we divide 63 by 35?

• Depending on the data types of the

variables that store the numbers, we will

get different results.

Integer Division (Cont’d)
• int i = 63;

int j = 35;

System.out.println(i / j);

Output: 1

• double x = 63;

double y = 35;

System.out.println(x / y);

Output: 1.8

• The result of integer division is just the
integer part of the quotient!

Assignment Expression

• The basic assignment operator (=) assigns
the value of expr to var

• Java allows you to combine arithmetic and

assignment operators into a single statement

• Examples:
x = x + 5; is equivalent to x += 5;

y = y * 7; is equivalent to y *= 7;

name = value

Increment/Decrement Operators

• ++ is called the increment operator. It is used
to increase the value of a variable by 1.

For example:
i = i + 1; can be written as:
++i; or i++;

• -- is called the decrement operator. It is
used to decrease the value of a variable by 1.

i = i - 1; can be written as:
--i; or i--;

Increment Operators (cont’d)

• The increment / decrement operator has

two forms :

- Prefix Form e.g ++i; --i;

- Postfix Form e.g i++; i--;

Prefix increment /decrement

• The prefix form first adds/ subtracts 1 from
the variable and then continues to any
other operator in the expression

• Example:

int numOranges = 5;
int numApples = 10;
int numFruit;
numFruit = ++numOranges + numApples;

numFruit has value 16

numOranges has value 6

Postfix Increment/ Decrement
• The postfix form i++, i-- first evaluates the

entire expression and then adds 1 to the
variable

• Example:

int numOranges = 5;
int numApples = 10;

int numFruit;

numFruit = numOranges++ + numApples;

numFruit has value 15

numOranges has value 6

Relational (Comparison) Operators

• Relational operators compare two values

• They produce a boolean value (true or

false) depending on the relationship

a is less than ba < b

a is less than or equal to ba <= b

a is not equal to ba != b

a is equal to ba == b

a is greater than or equal to ba >= b

a is greater than ba > b

….Is true whenOperation

Note: ==

sign!

Examples of Relational Operations
int x = 3;

int y = 5;

boolean result;

1) result = (x > y);

result is assigned the value false because

3 is not greater than 5

2) result = (15 == x*y);

now result is assigned the value true because the product of

3 and 5 equals 15

3) result = (x != x*y);

now result is assigned the value true because the product of

x and y (15) is not equal to x (3)

Conditional Operators

• Conditional operators can be referred to as
boolean operators, because they are only

used to combine expressions that have a
value of true or false.

NOT!

OR||

AND&&

NameSymbol

Truth Table for Conditional Operators

TrueFalseFalseFalseFalse

TrueTrueFalseTrueFalse

FalseTrueFalseFalseTrue

FalseTrueTrueTrueTrue

!xx || yx && yyx

Examples of Conditional Operators

boolean x = true;

boolean y = false;

boolean result;

– Let result = (x && y);

result is assigned the value false

– Let result = ((x || y) && x);

(x || y) evaluates to true
(true && x) evaluates to true

now result is assigned the value true

Using && and ||

• false && …

• true || …

• Java performs short circuit evaluation

– Evaluate && and || expression s from left to

right

– Stop when you are guaranteed a value

Short-Circuit Evaluation
(a && (b++ > 3));

What happens if a is false?

• Java will not evaluate the right-hand expression (b++
> 3) if the left-hand operator a is false, since the
result is already determined in this case to be false.
This means b will not be incremented!

(x || y);

What happens if x is true?

• Similarly, Java will not evaluate the right-hand
operator y if the left-hand operator x is true, since
the result is already determined in this case to be
true.

Review

1) What is the value of result?
int x = 8;
int y = 2;
boolean result = (15 == x * y);

2) What is the value of result?
boolean x = 7;
boolean result = (x < 8) && (x > 4);

3) What is the value of z?
int x= 5;
int y= 10;
int z= y++ + x+ ++y;

newnativelonginterfac

e

int

returnpublicprotectedprivatepackage

switchsuperstrictfpstaticshort

whileviolatevoidtry

transientthrowsthrowthissynchronized

instanceofimportimplementsifgoto

forfloatfinallyfinalextends

elsedoubledodefaultcontinue

constclasscharcatchcase

bytebreakbooleanassertabstract

Appendix I: Reserved Keywords

Appendix II: Primitive Data Types

This table shows all primitive data types along

with their sizes and formats:

Variables of this kind can have a value from:

-9223372036854775808 to +9223372036854775807 and

occupy 64 bits in memory

long

Variables of this kind can have a value from:

-2147483648 to +2147483647 and occupy 32 bits in memory

int

Variables of this kind can have a value from:

-32768 to +32767 and occupy 16 bits in memory

short

Variables of this kind can have a value from:

-128 to +127 and occupy 8 bits in memory

byte

DescriptionData Type

Appendix II: Primitive Data Types

Variables of this kind can have a value from:

4.9e(-324) to 1.7e(+308)

double

Variables of this kind can have a value from:

1.4e(-45) to 3.4e(+38)

float

DescriptionData Type

Real Numbers

Variables of this kind can have a value from:

True or False

boolean

Variables of this kind can have a value from:

A single character

char

Other Primitive Data Types

