
Lecture 1:

Introduction to Java
AITI Nigeria Summer 2012

University of Lagos.

Accelerating Information Technology Innovation

http://aiti.mit.edu

http://aiti.mit.edu/

Agenda

• First Lab ….. Class is Hands on remember

?

• Recap – Previously on AITI

• What makes Java special?

• Advantages and disadvantages to using

Java.

• Methodology for developing applications.

2

Recap - Teaching Style

• Emphasis on self-learning:

– We will encourage you to discover your own

answers

– The most important skill you will ever learn

• Emphasis on participation:

– Ask questions during lecture

– Provide constructive criticism

– Suggest course topics

– Interrupt if we use jargon or idioms

3

Recap - Self-Learning

• Use MIT’s OpenCourseWare website to

teach yourself Java

• Website: http://ocw.mit.edu

• ebooks

• Why self-teach?

– Move beyond the course curriculum

– Develop a more advanced final project

– We are here to help!

4

http://ocw.mit.edu

Recap - Student Evaluation

• There are no tests!

• Students will be evaluated on labs and projects:

• Labs:

– Design/Code

– Output

– Post-lab interview

• Projects:

– Idea

– Milestone Presentations

– Demo

5

Recap - Collaboration

• Students are encouraged to collaborate on labs

and projects.

• However, copying code without understanding is

not allowed.

• Zero tolerance

– If found copying, .. Well, we are not sure if you belong

in the class. Its always better to ask for clarification

than to copy!!

6

Starting Point - Compiler

…

a = b + c

…

…

ld $r1, a

ld $r2, b

add $r3, $r1, $r2

st a, $r3

…

Compiler

High-Level

Code

Machine Code

• A program that translates a programming
language into machine code is called a compiler

• Typically, we must have a compiler for each
operating system/machine combination (platform)

Compiling Computer Programs

• Because different platforms require different machine
code, you must compile programs separately for
each platform, then execute the machine code.

program

compiler
compiler

compiler

Win
Mac

Unix

machine codemachine code
machine code

The Java Compiler is Different!

• The Java compiler produces an

intermediate format called bytecode.

• Bytecode is not machine code for any

real computer.

• Bytecode is machine code for a model

computer.

– This model computer is called the Java

Virtual Machine.

Java Program

compiler

Java Bytecode

Java Interpreter

• A Java Interpreter is required to execute the

bytecode on a real computer.

• A Java Interpreter converts the bytecode into

machine code.

– As the program executes

– Simulate the execution of the Java Virtual Machine on

the real computer

• You can run bytecode on any computer that has

a Java Interpreter (JRE) installed!

– Only have to compile once

– Can distribute the same bytecode to everyone

The Java Approach

Java Program

compiler

Java bytecode

Win

Mac

Unix

Interpreter

Interpreter

Interpreter

Advantages of Using Java

• Once a Java program is compiled you can run the
bytecode on any device with a Java Interpreter.
– Because you do not have to recompile the program for each

machine, Java is device independent.

• Java is safe. The Java language and compiler restrict
certain operations to prevent errors.

– Would you want an application to have total control of your

phone?

• Make calls, send SMS messages?

• Java standardizes many useful structures and
operations such as lists, managing network connections,
and providing graphical user interfaces

Disadvantages of Using Java

• Running bytecode through an interpreter is not
as fast as running machine code
– But this disadvantage is slowly disappearing

• Using device specific features (e.g., bluetooth) is
difficult sometimes because Java is device-
independent.

• In order to run a Java program on multiple
devices, each must have a Java Interpreter
– Ex: most Nokia phones come with Java Interpreter

Programming Methodology

1. Specify and analyze the problem

• Remove ambiguity

• Decide on inputs/outputs and algorithms

2. Design the program solution

• Organize problem into smaller pieces

• Identify existing code to reuse!

3. Implementation (programming)

4. Test and verify implementation

5. Maintain and update program

Writing Good Code

• A program that meets specification is not
necessarily good.

• Will you be able to make changes to it?

– Will you understand it after some time?

• Others might need to look at your code

– Can they understand it?

• Write your program so that is easy to
understand and extend!

– Spend extra time thinking about these issues.

Example Code: Comments

/* The HelloWorld class prints “Hello,

World!” to the screen */

public class HelloWorld {

public static void main(String[] args) {

// Prints “Hello, World!”

System.out.println("Hello, World!");

// Exit the program

System.exit(0);

}

}

Comments

• Comments are used to describe what your code

does as an aid for you or others reading your

code. The Java compiler ignores them.

• Comments are made using //, which comments

to the end of the line, or /* */, which

comments everything inside of it (including

multiple lines)

• Two example comments:
– /* The HelloWorld class prints “Hello, World!” to the

screen */

– // Prints “Hello, World!”

Comments on Commenting

• You may collaborate on software projects

with people around the world who you’ll

never meet

• Should be able to figure out how code

works by reading comments alone

• Anything that is not self-evident needs a

comment

• 50% of your code might be comments

• Coding is easy, commenting is not

