
MEXICO 2015, iLAB XALAPA
http://tiny.cc/GSLMEX15

Object Oriented Programming in Python

2015

Objects
•  A unique instance of a data structure that's defined by

its class.
•  An object comprises both state (data) and behavior

(methods)
•  Objects are made up of attributes and methods
•  Object instances are specific realizations of a class.

Class
•  A user-defined prototype for an object that defines any

object of the class.
•  The attributes are data members and methods.

2015

2015

Encapsulation	
 	

Only what is necessary is exposed (public interface) to the outside.
Implementation details are hidden to provide abstraction. Abstraction
should not leak implementation details. Abstraction allows us to break
up a large problem into understandable parts

Inheritance	
 	

“a dog (subclass) is a mammal (parent / superclass)”
Subclass is derived from / inherits / extends a parent class.
Override parts with specialized behavior and extend it with additional
functionality.
Liskov substitution principle: What works for the parent class should
also work for any subclass.
Python supports a limited form of multiple inheritance as well.

2015

Polymorphism	
 	

Different subclasses can be treated like the parent class, but execute
their specialized behavior. Example: When we let a mammal make a
sound that is an instance of the dog class, then we get a barking
sound.

2015 Inheritance

2015 Multiple Inheritance

2015 Self

2015 Encapsulation

2015 An example of Private

2015 Python OOPS Basics - 1

2015 Python OOPS Basics - 2

2015 Python OOPS Basics - 3

2015 Python OOPS Basics - 4

2015

2015

References:	

	

h+p://www.cs.colorado.edu/~kena/classes/5448/f12/presenta=on-­‐materials/li.pdf	

	

h+ps://python.g-­‐node.org/python-­‐summerschool-­‐2013/_media/wiki/oop/
oo_design_2013.pdf	

	

	

