BN)}, Startuph

MEXICO 2015, iLAB XALAPA
http://tiny.cc/GSLMEX15

Iy Global Startupi

Object Oriented Programming in Python

Objects

« A unique instance of a data structure that's defined by
Its class.

« An object comprises both state (data) and behavior
(methods)

« Objects are made up of attributes and methods

« Object instances are specific realizations of a class.

Class

« A user-defined prototype for an object that defines any

object of the class.
 The attributes are data members and methods.

* Class includes two members: form and object.

* The example in the following can reflect what is the
difference between object and form for class.

A:
i =123

_nit (self): Invoke form: just invoke data or

self.1 = 123 45’ method in the class, so i=123
F§~:E i()l ; . Invoke object: instantialize object
ptin ' Firstly, and then invoke data or
5SS Methods.
123 Here it experienced __init_ (),
12345 i=12345

Encapsulation

Only what is necessary is exposed (public interface) to the outside.
Implementation details are hidden to provide abstraction. Abstraction
should not leak implementation details. Abstraction allows us to break
up a large problem into understandable parts

Inheritance

“a dog (subclass) is a mammal (parent / superclass)"

Subclass is derived from / inherits / extends a parent class.

Override parts with specialized behavior and extend it with additional
functionality.

Liskov substitution principle: What works for the parent class should
also work for any subclass.

Python supports a limited form of multiple inheritance as well.

Global

Polymorphism

Different subclasses can be treated like the parent class, but execute
their specialized behavior. Example: When we let a mammal make a
sound that is an instance of the dog class, then we get a barking

sound.

Global

Inheritance

Person: Inheritance in Python is simple,

speak (self) : . Just like JAVA, subclass can invoke

print 'I can speak : _
Attributes and methods in superclass.

Man (Person) :
wear (self) :

From the example, Class Man inherits

S Class Person, and invoke speak() method
Woman (Person) : In Class Person
wear(self):
print *I Inherit Syntax:
man = Man ()
man.wear () class subclass(superclass):
man.speak()
>>>
I wear shirt
I can speak In Python, it supports multiple inheritance,

In the next slide, it will be introduced.

I Multiple Inheritance

* Python supports a limited form of multiple inheritance.
* A class definition with multiple base classes looks as follows:

class DerivedClass(Basel, Base2, Base3 ...)
<statement-1>

<statement-2>

* The only rule necessary to explain the semantics is the
resolution rule used for class attribute references. This is
depth-first, left-to-right. Thus, if an attribute is not found in
DerivedClass, it is searched in Basel, then recursively in the
classes of Basel, and only if it is not found there, it is searched
in Base2, and so on.

i Self

* “Selt” in Python is like the pointer “this” in C++. In
Python, functions in class access data via “selt”.

Person:
init (self,name):
self.name = name

PrintName (self) :
print self.name

P = Person('Yang Li'")

p1 P.name
P.PrintName ()

* “Selt” in Python works as a variable of function but it
won’t invoke data.

' Encapsulation

* In Python, there is no keywords like “public’, “protected’
and “private’ to define the accessibility. In other words, In
Python, it acquiesce that all attributes are public.

* But there is a method in Python to define Private:

Add “__” in front of the variable and function name
can hide them when accessing them from out of
class.

Il An example of Private

Person:
__init (self):

self.A 'Y :'.i, ') Public variable

T . .
PrintName (self) : Private variable

print self.}

print self. B > Invoke private variable in class
P = Person|()
>>> P.A Access public variable out of class, succeed
'"Yang Li'
>>> P._ B > Access private variable our of class, fail
Traceback (most recent call last):
File "<pyshell#61l>", line 1, in <module>

P. B

AttributeError: Person instance has no attribute ' B’

>>> P.PrintName ()
Yang Li
Yingying Gu

~ Access public function but this function access
Private variable __B successfully since they are in
the same class.

i Python OOPS Basics - 1

B All classes are derived from object (new-style classes).

class Dog(cbject):
pass

B Python objects have data and function attributes (methods).

class Dog(cbject):
def bark(self):
print "Wuff!"

snowy = Dog()
snowy.bark() # first argument (self) is bound to this Dog instance

&
snowy.a = 1 ¥ added attribute a to snowy

B Always define your data attributes first in init

class Dataset (object):
def _ init_ (self):
self.data = None
def store_data(self, raw_data):
process tne data

self.data = processed data

i Python OOPS Basics - 2

B Class attributes are shared across all instances.

class Platypus (Mammal) :
latin name = "Ornithorhynchus anatinus"

B Use super to call a method from a superclass.

class Dataset (object):
def _ init (self, data):
self.data = data

class MRIDataset (Dataset):
not have to follow the Liskov principle

1nit does no 1ave
def init (self, data, parameters):
here has the same effect as calling
Dataset. init (self) _
super(ﬂRIDataseL, self). init (data)
self.parameters = parameters

{'amplitude': 11})

mri data = MRIDataset([1l,2,3],

self) can be written super ().

Note: In Python 3 super (B,

i Python OOPS Basics - 3

B Special / magic methods start and end with two underscores
(“dunder”) and customize standard Python behavior (e.g., operator
overloading).

class My2Vector (object) :
def init (self, x, y):
self.x = x
self.y = vy

def add_ (self, other):
return My2Vector (self.x+other.x, self.y+other.y)

vl = My2Vector(l, 2)
vZ2 = My2Vector(3, 2)
v3 vl + v2

Il

i Python OOPS Basics - 4

B Properties allow you to add behavior to data attributes:

class My2Vector (object):
def 1n1t;_(self, 73y 7)) &
self. x = x
self. vy =y

def get x(self):
print "returning x, which is {}".format(self. x)
return self. x

def set x(self, x):
print "setting x to {}".format (x)
self. x = X

X = property(get x, set Xx)

vl = My2Vector(l,
X =vl.x # uses

he ge
vli.x = 4 # uses the se

r‘
T‘

Helps with refactoring (can replace direct attribute access with a

property).

How to come up with a good structure for classes and modules?

B KIS & iterate. When you see the same pattern for the third time
then it might be a good time to create an abstraction (refactor).

B Sometimes it helps to sketch with pen and paper.

B Classes and their inheritance often have no correspondence to the
real-world, be pragmatic instead of perfectionist.

B Design principles tell you in an abstract way what a good design
should look like (most come down to loose coupling).

B Testability (with unittests) is a good design criterium.

B Design Patterns are concrete solutions for reoccurring problems.

References:

http://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/li.pdf

https://python.g-node.org/python-summerschool-2013/ media/wiki/oop/
o0 design 2013.pdf

