
Choose Your Weapon Wisely
A handbook for determining the right software development

method best suited for your team, client, and project

Justin Rockwood

Carnegie Mellon University

Table of Contents

Abstract v

Acknowledgements vi

1 Introduction 1

1.1 The State of the Art...1

1.2 Audience, Purpose, and Goals ...2

2 Selected Processes Overview 3

2.1 Comparison Criteria..4

2.2 Rational Unified Process (RUP)..4

Overview...4

Roles ..6

Artifacts...6

Tools Support ...6

2.3 Microsoft’s Synch-and-Stabilize Process (MSS)...............7

Overview...7

Roles ..8

Artifacts...10

Tools Support ...10

2.4 Team Software Process (TSP)11

Overview...11

Roles ..11

Artifacts...14

Tools Support ...15

i

2.5 Extreme Programming (XP)..15

Overview...15

Roles ..16

Artifacts...18

Tools Support ...18

2.6 Scrum ...19

Overview...19

Roles ..20

Artifacts...21

Tools Support ...21

2.7 Process Summary ..21

3 Choose Your Weapon 22

3.1 Team and Product Size ..22

Team Size ..22

Total Developers...24

Product Size and Complexity..24

3.2 Developers and Organization ...25

Competent and Experienced Developers25

Level of Hacker Sentiment..27

Management Style..28

Organization-Wide Processes ..29

New Process Adoption ...30

3.3 Product ...30

Type of Product ..30

3.4 Requirements ...32

ii

Requirements Stability..32

Requirements Traceability ..32

4 Conclusion 34

Appendix A – Question Tally Sheet 35

Appendix B – Sample Tally Sheets 36

References 39

iii

iv

Abstract

In war, battles can be won or lost depending on the weapons that the armies
wield. If the weapon matches the situation, the army can be victorious;
otherwise the battle will be lost. It is the same with choosing your “weapon” in a
software project. Choosing the right development process can help your project
succeed, but choosing a process that doesn’t match your particular needs can
cause your project to ultimately fail.

In this paper, I have chosen to focus on five of the most popular processes in use
today: Rational Unified Process (RUP), Microsoft’s Synch and Stabilize (MSS),
Team Software Process (TSP), Extreme Programming (XP), and Scrum.

The goal of this paper is twofold. First and foremost, I hope to provide enough
impartial information to educate the novice manager or practitioner as to the
tradeoffs and inherent strengths and weaknesses of each of the chosen processes.
Secondly, I hope to present both novice and seasoned managers and practitioners
a mechanism whereby they can determine which processes are best suited to
their particular project, team, and customer. This is done by providing a series of
questions designed to help them frame their desired goals within the context of
specific processes (namely RUP, MSS, TSP, XP, and Scrum). The questions are
backed by relative weights which assign numeric values to a series of attributes,
such as team dynamics and project type. These relative weights are supported
by empirical evidence presented through case studies and current industrial and
academic research.

It must be stressed that the purpose of this paper is not to recommend one
process over another blindly. Each process has inherent strengths and
weaknesses, and despite the claims made by proponents of each process, there is
not a single process that works equally well over every single type of project that
exists in industry today. Each process must be evaluated and weighed in the
context of a specific project in order to determine the best match.

v

Acknowledgements

Without the help of my advisor, Ïpek Özkaya, none of this would have been
possible. She not only provided invaluable references, advice, and feedback, but
she kept me sane throughout the researching and writing of this paper by
helping me stay focused on the end goal.

I would also like to acknowledge the help of David Root, my Studio mentor, who
convinced me that I should stick with this project and endure to the end.

vi

1 Introduction

1.1 The State of the Art

In the early days of computer systems software was small and nimble and
usually written by one sole programmer. The complete application could be
understood in its entirety by a single person. Since changes could be quickly and
easily accommodated, not a huge amount of planning or design was done before
diving into the code. Barry Boehm terms this as the “Code-and-Fix” model,
where the programmer writes some code and then thinks about the
requirements, design, test, and maintenance later [Boehm 88].

As demand for software increased, so did its size and complexity. Functional
programming languages and design techniques started to evolve and the famous
waterfall method1 of software development was born. Additional techniques
and processes, such as object-oriented design and languages, were created to
cope with the exponential increase in complexity.

Today we are faced with colossal pieces of software that are so complex that it is
impossible for any one person to understand the entire system. Windows XP has
over 40 million lines of code and Red Hat Linux 7.1 has over 30 million [Wheeler
01]. Additionally, with the advent of the World Wide Web, customers are
expecting application development to occur in “Internet time” (weeks instead of
years), many of which have to be distributed over several to hundreds of
computers and systems. Further constraints such as COTS (commercial off-the-
shelf) component integration and backwards-compatibility with existing
versions make the problem even worse.

Coping with and successfully managing these seemingly impossible
requirements have led to the development of countless development processes.2
However, the plethora of processes and tools available today often leave
managers and software practitioners in a quandary as to which process they
should choose to develop their software. In this paper, I have chosen to focus on

1 The waterfall method is where the application development is split into roughly four distinct
phases: requirements, design, code, and test. Each phase is completed before proceeding to the
next phase. Much like a waterfall, you can move down the progression, but not back up.
2 Some texts refer to processes and methods synonymously. Here I will use the term process to
refer to the series of actions that guide a team through the procedure of developing software.

1

Hector Beltran

five of the most popular processes in use today: three “traditional”3 processes,
Rational Unified Process (RUP), Microsoft’s Synch and Stabilize (MSS), and
Team Software Process (TSP); and two agile processes, Extreme Programming
(XP) and Scrum.

1.2 Audience, Purpose, and Goals

In war, battles can be won or lost depending on the weapons that the armies
wield. If the weapon matches the situation, the army can be victorious;
otherwise the battle will be lost. It is the same with choosing your “weapon” in a
software project. Choosing the right development process can help your project
succeed, but choosing a process that doesn’t match your particular needs can
cause your project to ultimately fail.

The goal of this paper is twofold. First and foremost, I hope to provide enough
impartial information to educate the novice manager or practitioner as to the
tradeoffs and inherent strengths and weaknesses of each of the chosen processes.
Secondly, I hope to present both novice and seasoned managers and practitioners
a mechanism whereby they can determine which processes are best suited to
their particular project, team, and customer. This is done by providing a series of
questions designed to help them frame their desired goals within the context of
specific processes (namely RUP, MSS, TSP, XP, and Scrum). The questions are
backed by relative weights which assign numeric values to a series of attributes,
such as team dynamics and project type. These relative weights are supported
by empirical evidence presented through case studies and current industrial and
academic research.

It must be stressed that the purpose of this paper is not to recommend one
process over another blindly. Each process has inherent strengths and
weaknesses, and despite the claims made by proponents of each process, there is
not a single process that works equally well over every single type of project that
exists in industry today. Each process must be evaluated and weighed in the
context of a specific project in order to determine the best match.

3 The term “traditional” process refers to the level of planning and structure involved. I chose
this term because in relation to the agile processes, RUP, MSS, and TSP more closely resemble the
way development was traditionally done with the waterfall method.

2

2 Selected Processes Overview

There are literally hundreds of software development processes in use in
industry today, ranging from the undocumented, ad-hoc process that is passed
on by word of mouth from developer to developer, to the highly structured and
rigorous processes that dictate how every aspect of the development life-cycle
should be conducted.

This paper focuses on five of the more popular development processes in use
today, ranging from the more structured TSP (Team Software Process) to the
highly agile Scrum process.

Barry Boehm presents a spectrum of increasing emphasis on plans [Boehm 02],
which I have modified slightly by placing the chosen processes on the spectrum
(shown in Figure 1). “In this context, the term ‘plan’ includes documented
process procedures that involve tasks and milestone plans, and product
development strategies that involve requirements, designs, and architectural
plans” [Boehm 02].

Inch-pebble
ironbound
contract

Milestone
plan-driven

models

Milestone
risk-driven

models

Adaptive
SW

development

XP and
Scrum

Figure 1: Spectrum of processes discussed in this paper. Unplanned and undisciplined
processes are on the extreme left, while micromanaged milestone planning, also known as

inch-pebble planning, occupies the extreme right.

A brief background of each method is described in this section, in preparation for
the questionnaire in the next section.

TSPHackers
RUP and

MSS

Agile processes

3

2.1 Comparison Criteria

Most processes have many of the same elements, which makes a comparison
possible. All processes have people fulfilling specific roles that work together to
produce artifacts, which could be the source code, architecture diagrams,
requirements documents, and so on. Also, these artifacts usually demarcate
milestones in the project, which each process acknowledges but perhaps in
different ways.

Each process overview follows the same pattern, which makes it easier to
compare the various processes along common criteria. The pattern is a follows:

! Overview – a brief description of the process, including any unique
characteristics, from the main texts describing the process.

! Roles – what specific positions are called for in the process and how are
they filled.

! Artifacts – what kinds of documents and other artifacts are produced,
how often they are produced, and how critical they are to the process.

! Tools Support – how many different kinds of tools are available for using
the process and what is the cost.

2.2 Rational Unified Process (RUP)

Overview
The Rational Unified Process (RUP, pronounced “rup,” not “R. U. P.”) provides a
disciplined approach to assigning tasks and responsibilities within a
development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its end users within a predictable schedule and
budget [Kruchten 00]. Unlike the other processes discussed in this paper, RUP is
a process product, which means that it is developed, maintained, and sold by
Rational Software (now owned by IBM). An organization cannot fully use RUP
without the accompanying product, although it can use the unified process,
which is the precursor and basis of the Rational Unified Process, as described in
[Jacobson 99]. Additionally, you do not have to use Rational products for every
aspect of the Rational Unified Process (Rational Rose for UML, for example).

RUP embodies six industry best practices within its process framework:

1. Develop software iteratively.
2. Manage requirements.
3. Use component-based architectures.
4. Visually model software.

4

5. Continuously verify software quality.
6. Control changes to software.

A full description of each of these six practices is outside of the scope of this
paper, but can be found in [Kruchten 00], the main source of information about
RUP. Point four, however, should be noted. Since Rational is the creator of UML
(Unified Modeling Language)4, it is also a major component of the Rational
Unified Process. When using the RUP, you must also use UML: “The Rational
Unified Process is a guide to the effective use of the UML for modeling”
[Kruchten 00, p. 29].

The famous architectural diagram of the RUP is shown in Figure 2. The process
has two dimensions:

! The horizontal dimension represents time and shows the lifecycle aspects
of the process as it unfolds.

! The vertical dimension represents core process disciplines (or workflows),
which logically group software engineering activities by their nature
[Kruchten 01].

Figure 2: Two Dimensions of RUP

4 The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system [Kruchten 00, p. 28].

5

Roles
RUP defines over 30 roles in its process. At first glance, this may seem an
inordinate amount and may be one of the reasons why it has a stigma associated
with it as being “heavyweight.” It is important to understand how RUP defines
a role, however, before judging whether the Rational Unified Process is too
monolithic to use for your particular project.

Roles were formerly called workers in previous versions of the RUP. A worker
defines the behavior and responsibilities of an individual or a group of
individuals working together as a team. The responsibilities of each worker are
usually expressed in relation to certain artifacts that the worker creates, modifies,
or controls. It’s helpful to think of a worker as a “hat” that an individual can
wear during the project. One person may wear many hats. This distinction is
important because it is natural to think of a worker as the individual or the team,
but in the Rational Unified Process the term worker refers to the roles that define
how the individuals should do the work [Kruchten 00].

Artifacts
RUP prefers to call deliverables artifacts rather than documentation. Artifacts are
the tangible products of the project: the things the project produces or uses while
working toward the final product. Typically, artifacts are not documents. RUP
claims that it “discourages the systematic production of paper documents”
[Kruchten 00], however, there are over 60 artifacts defined in the Rational
Unified Process. It should be noted that not all of these artifacts will be produced
in any given project. Also, RUP is designed to be tailored to an organization’s
particular environment and the specific project that is under development.

Tools Support
The good news in RUP is that there are many tools available, mostly from
Rational, to aid in using the Rational Unified Process in your organization. The
bad news is that RUP requires a lot of tool support because of all of the artifacts.
As a bare minimum, you need the RUP tool itself, a UML tool, a word processor,
templates for the paper-based documentation, a version control system, and a
requirements change management tool. Most of these tools are available from
vendors other than Rational. However, Rational’s tools are integrated together
to form a coherent whole.

6

2.3 Microsoft’s Synch-and-Stabilize Process (MSS)

Overview
Any discussion about software process would be incomplete without at least
mentioning the process that the largest and most successful software company in
the world uses. Unfortunately, there is not a lot of printed material about the
details of Microsoft’s internal development process. The main work on this
subject is the book Microsoft Secrets [Cusumano 95], written by two independent
researchers, Michael Cusumano and Richard Selby. Although the book was
written in 1995, Microsoft’s basic process has not changed much since that time.
It should also be noted that Microsoft has another process which they tout, called
the Microsoft Solutions Framework (MSF). This process is used by Microsoft
Consulting Services to help other software organizations in their development
process. While encompassing many of the internal processes used within
Microsoft, it does not completely describe the synch-and-stabilize approach used
to develop most of Microsoft’s products.

The term “synch and stabilize” (hereafter abbreviated as MSS) was coined by
Cusumano and Selby in their book to describe Microsoft’s milestone-driven
development process. To quote them directly:

We have labeled Microsoft’s style of product development the synch-and-
stabilize approach. The essence is simple: continually synchronize what people
are doing as individuals and as members of different teams, and periodically
stabilize the product in increments—in other words, as the project proceeds,
rather than once at the end. When team members build components that are
interdependent but difficult to define accurately in the early stages of the
development cycle, the team must find a way to structure and coordinate what
the individual members do while allowing them enough flexibility to change the
product’s details in stages. This is useful to do as developers test the product
with customers and refine their designs during the development process.5

There are three main phases in MSS: planning, development, and stabilization.6
These phases are done serially, but within each phase development can happen
in parallel amongst separate feature teams.

Planning Phase

The planning phase usually takes 3-12 months and encompasses defining the
product vision, specification, and schedule. The three main steps are:

5 Cusumano 95, p. 14.
6 The phases are summarized from a diagram in Cusumano 95, p. 194.

7

! Vision Statement: Product and program management use extensive
customer input to identify and prioritize product features.

! Specification Document: Based on the vision statement, program
management and the development group define feature functionality,
architectural issues, and component interdependencies.

! Schedule and Feature Team Formation: Based on the specification
document, program management coordinates the schedule and arranges
feature teams that each contain approximately 1 program manager, 3-8
developers, and 3-8 testers (who work in parallel 1:1 with developers).

Development Phase

The development phase is where the coding takes place. Feature development
occurs over 3 or 4 sequential subprojects that each result in a milestone release.
Program managers coordinate the evolution of the specification. Developers
design, code, and debug. Testers pair up with developers for continuous testing.

! Subproject I: The first third of the features are developed, which are the
most critical features and/or shared components.

! Subproject II: The second third of the features are developed.
! Subproject III: The final third of the features are developed, which are

the least critical features.

Stabilization Phase

In this phase, comprehensive internal and external testing, final product
stabilization, and shipping the product are performed. Program managers
coordinate OEMs (Original Equipment Manufacturers) and ISVs (Independent
Software Vendors) and monitor customer feedback. Developers perform final
debugging and code stabilization. Testers recreate and isolate errors.

! Internal Testing: Thorough testing of the complete product within the
company.

! External Testing: Thorough testing of the complete product outside the
company by “beta” sites such as OEMs, ISVs, and end-users.

! Release Preparation: Prepare the final release of “golden master”
diskettes and documentation for manufacturing.

Roles
Although there are several types of supporting roles in MSS, there is a
triumvirate of three major roles that make up a core team: program manager,
developer, and tester. Each role is considered vital and equal to each other in
importance. One cannot exist without the other.

8

Program Manager (PM)

The program manager (PM) serves as a critical link between the developers and
the marketing department. He or she ultimately oversees the development
process to make sure that it aligns with customer needs and requirements. It is
important to point out that the program manager “is a leader, facilitator, and
coordinator, but is not the boss.”7 Also, the PM is not the designer. Although the
program manager can have a key part in the design process, as Bill Gates says,
“development is still … in the strong position, let’s face it. If they have an idea,
they get to write the code.”8 The key areas of responsibility for program
managers are:

! the product’s vision
! the written product specification
! the product schedule
! the product development process
! all implementation trade-offs
! coordination of the product development groups

Developer (Software Design Engineer, or SDE)

Program managers generally focus on the vision for the overall product and
what types of features make up this vision. Developers, in contrast, define the
vision and create the details of individual product features. Developers “write
the code, they implement the features, they know the code base. Their job is to
ship products by writing code.”9 The developer’s main responsibilities are
summarized below:

! determine the vision for new features
! design the features
! allocate project resources
! build the features
! test the features
! prepare the product for shipping

7 Ibid., p. 77.
8 Ibid., p. 79.
9 Cusumano 95, p. 82-83.

9

Tester (Software Test Engineer, or STE)

Many of the other processes presented in this paper treat development and
testing as either a single activity or the role is filled by the same person.
Microsoft, however, treats testing as a separate discipline filled by a different
person. Each developer has a testing “buddy” and the two of them work very
closely together. Microsoft summarizes why it treats testing as a separate
discipline in three ways: (1) Developers do not produce perfect code, and
program managers do not produce perfect specifications; (2) it is necessary to
have someone detached from the spec and the code provide an unbiased
perspective on their quality; and (3) it is much less expensive and easier for
developers—as well as much better for product reliability and customer
satisfaction—to find and fix bugs as early as possible in the development process,
when pieces of code are less intertwined.10

Other Roles

MSS has three more well-defined functions that also overlap with the other roles.
Product managers are marketing specialists; customer support engineers provide
technical support to users and analyze customer feedback; and user education staff
prepares manuals and help documentation.

Artifacts
MSS has two main pieces of documentation that are essential to any project: the
vision document and the specification document. These two pieces of
documentation are written in the planning phase and define the scope and vision
of the project. Other pieces of documentation are schedules from the program
manager, code from the developers, and test plans and automated test cases from
the testing group.

Tools Support
Although there is a wealth of internal tools support within Microsoft,
unfortunately there are not a lot of commercially available tools to support using
the synch-and-stabilize process “out of the box.” There are, of course, tools to
support documentation and planning that the PM must do, development tools
for the developer, and testing tools that support the tester, but there is not one
comprehensive “synch-and-stabilize product” or suite of products (such as
Rational has for their Unified Process).

10 Ibid., pp. 85-86.

10

2.4 Team Software Process (TSP)

Overview
The Team Software Process (TSP)11 was created by Watts Humphrey of Carnegie
Mellon’s SEI (Software Engineering Institute). It “provides a structured set of
steps, shows engineers what to do at each step, and demonstrates how to connect
these steps to produce a completed product” [Humphrey 00]. Virtually every
aspect of the development process is codified in a series of step-by-step scripts.
Since it builds upon the Personal Software Process (PSP), even the process of
writing code is documented in a script. Each script contains a set of entry
criteria, actions, and exit criteria that determine when the actions on the script
have been completed. The development process is iterative in nature (each
iteration is called a cycle in TSP), with each successive iteration building upon its
predecessors until finally you have a completed project.

There are two different flavors of TSP: one targeted towards an academic
environment (TSPi) and another targeted towards industry use. Although there
are slight variances, the process is similar enough that I will use TSPi as the basis
for discussion in this paper. The main source of information for TSPi is the book
Introduction to the Team Software Process by Watts Humphrey.

Roles
There are five main roles in TSP: team leader, development manager, planning
manager, quality/process manager, and the support manager. Each person,
besides filling one of the above roles, acts as a developer and writes code. This is
the default behavior for the academic version, TSPi, but the roles can be
separated in the industry version of TSP.

Team Leader

The team leader knows what needs to be done, and is willing to insist that the
team members do their work as they know they should. He or she must settle
disputes and must maintain the team’s energy and pace while also taking
advantage of everyone’s creative ideas and abilities.12

The eight principle responsibilities of the team leader are as follows:

1. Motivate the team members to perform their tasks.
2. Hold a team meeting every week.

11 Team Software Process, TSP, Personal Software Process, and PSP are all service marks of
Carnegie Mellon University.
12 Humphrey 00, p. 217.

11

3. Report team status and progress to superiors every week.
4. Lead the team in allocating tasks among the team members.
5. Act a facilitator and timekeeper in all the team meetings.
6. Maintain the project notebook.
7. Lead the team in producing the development cycle report.
8. Act as a development engineer.13

Development Manager

The development manager’s specific goal is to guide the team in producing a
superior product. The measure of success in achieving this goal is that the team
produces a useful and fully documented product that meets the basic
requirements of the need statement.14

The 11 principle responsibilities of the development manager are as follows:

1. Lead the team in producing the development strategy.
2. Lead the team in producing the preliminary size and time estimates for

the products to be produced.
3. Lead the development of the software requirements specification.
4. Lead the team in producing the high-level design.
5. Lead the team in producing the software design specification.
6. Lead the team in implementing the product.
7. Lead the development of the build, integration, and system test plans.
8. Lead the team in developing the test materials and running the tests.
9. Lead the team in producing the product’s user documentation.
10. Participate in producing the development cycle report.
11. Act as a product developer.15

Planning Manager

The planning manager’s principal goal is to help and support the team in
producing a complete, precise, and accurate project plan. A second planning
manager goal is to accurately track team progress and produce a weekly project
status report that the team leader uses to report status to his or her superiors.16

The six principal responsibilities of the planning manager are as follows:

13 Humphrey 00, p. 217.
14Humphrey 00, p. 232.
15 Humphrey 00, p. 233.
16 Humphrey 00, p. 248.

12

1. Lead the team in producing the task plan for the next development
cycle.

2. Lead the team in producing the schedule for the next development
cycle.

3. Lead the team in producing the balanced team-development plan.
4. Track the team’s progress against the plan.
5. Participate in producing the development cycle report.
6. Act as a product developer.17

Quality/Process Manager

The quality/process manager’s principal goal is to help the team members
record and use their TSP data, to guide the team in faithfully using the TSP to
produce a quality product, and to perform effectively as the team’s inspection
moderator and meeting recorder.18

The nine principal responsibilities of the quality/process manager are as follows:

1. Lead the team in producing and tracking the quality plan.
2. Alert the team, the team leader, and any superiors to quality problems.
3. Lead the team in defining and documenting its processes and in

maintaining the process improvement process.
4. Establish and maintain the team’s development standards and the

system glossary.
5. Review and approve all products before submission to the CCB

(change control board).
6. Act as the team’s inspection moderator.
7. Act as recorder in all the team’s meetings.
8. Participate in producing the development cycle report.
9. Act as a product developer.19

Support Manager

The support manager’s principal goals are to ensure that the team has suitable
tools and methods to support its work, to make sure that there are no
unauthorized changes to baselined products, to record and track all risks and
issues, and to help the team meet its reuse goals.20

17 Humphrey 00, p. 249.
18 Humphrey 00, p. 264.
19 Humphrey 00, p. 265.
20 Humphrey 00, p. 276.

13

The eight principal responsibilities of the support manager are as follows:

1. Lead the team in determining its support needs and in obtaining
needed tools and facilities.

2. Chair the configuration control board and manage the change control
system.

3. Manage the configuration management system.
4. Establish and maintain the system glossary.
5. Handle the team’s issue- and risk-tracking.
6. Act as the team’s reuse advocate.
7. Participate in producing the development cycle report.
8. Act as a development engineer.21

Artifacts
The majority of the TSP’s artifacts are paper-based documentation in the form of
plans, scripts, documents, and reports. Some of the notable artifacts are the SRS
(Software Requirements Specification), SDS (Software Design Specification), test
plan, and planning document. “Out of the box,” there are over 20 forms, scripts,
and written documentation that are required to be filled out. This makes TSP the
most document-intensive process examined in this paper. This is not a bad
thing, however, as the comprehensive scripts and forms allow novice or new
teams to quickly become productive.

Since the process is highly structured and documented, it facilitates rapid ramp-
up times for new teams and team members. This is especially evident in team
projects where every person on the team might be unfamiliar with each other
and each individual team members’ strengths and weaknesses. Much of the time
spent trying to set up roles and processes within the team are handled by the
scripts. Furthermore, each role is defined so well that almost any person can fill
the role, without prior experience or expertise. A team lead does not necessarily
have to be the strongest leader, for example, or the QA person does not have to
have formal training in testing and verification.

There seems to be a point at which the highly structured script-based process can
impose a lot of overhead to the development work. For certain project domains
and applications, this overhead is necessary and indispensable, such as mission-
or safety-critical systems where human lives are at stake. This overhead can be a
weakness to the process if the problem domain does not call for it. Although
proponents of the TSP would argue that the process can be tailored to the
individual needs of the team if the team finds that it is too heavyweight,

21 Humphrey 00, p. 277.

14

ironically it must be done in a highly structured way by filling out a PIP (Process
Improvement Proposal).

Tools Support
Although there are some rudimentary tools to support the TSP, most of the tools
come in the form of comprehensive forms and scripts (as described above). Most
of the forms are available as Excel spreadsheets to facilitate easy data entry.

2.5 Extreme Programming (XP)

Overview
Extreme Programming (XP) is perhaps one of the most talked about processes as
of late. In many people’s minds it epitomizes the Agile methodology. The
general principle behind XP is that software is nothing without the code.
Anything detracting from writing code had better have a good reason for doing
so. This includes detailed plans and designs, which is one reason why XP has
drawn some criticism from opponents.

There are 12 main tenets of XP, summarized below.22

! The Planning Game—Quickly determine the scope of the next release by
combining business priorities and technical estimates. As reality
overtakes the plan, update the plan.

! Small releases—Put a simple system into production quickly, and then
release new versions on a very short cycle.

! Metaphor—Guide all development with a simple shared story of how the
whole system works.

! Simple design—The system should be designed as simply as possible at any
given moment. Extra complexity is removed as soon as it is discovered.

! Testing—Programmers continually write unit tests, which must run
flawlessly for development to continue. Customers write tests
demonstrating that features are finished.

! Refactoring—Programmers restructure the system without changing its
behavior to remove duplication, improve communications, simplify, or

22 Beck 00, p. 54.

15

Hector Beltran

add flexibility.

! Pair programming—All production code is written with two programmers
at one machine.

! Collective ownership—Anyone can change any code anywhere in the
system at any time.

! Continuous integration—Integrate and build the system many times a day,
every time a task is completed.

! 40-hour week—Work no more than 40 hours a week as a rule. Never work
overtime a second week in a row.

! On-site customer—Include a real, live user on the team, available full-time
to answer questions.

! Coding standards—Programmers write all code in accordance with rules
emphasizing communication through the code.

Roles
XP defines 7 different roles, all of which could be filled by the same person. The
only exception is customer, which should optimally be a person not associated
with any other role on the team. Five of the seven roles are primary roles, with
the other two being secondary roles and are not always needed on an XP project.

Programmer

“The programmer is the heart of XP. Actually, if programmers could always
make decisions that carefully balanced short-term and long-term priorities, there
would be no need for any other technical people on the project besides
programmers.”23

Programmers are responsible for writing the code in pairs, one who “drives,”
and the other who ensures that the code is defect-free. In this way, reviews are
built into the coding process. Programmers also must use the “test-first”
mentality by writing unit tests that test the feature to be implemented before it is
coded.

23 Beck 00, p. 141.

16

Customer

“The customer is the other half of the essential duality of extreme programming.
The programmer knows how to program. The customer knows what to
program.”24

Customers are responsible for determining what features the system must have
and which ones can be postponed until the next version. Additionally, the
customer must be adept at writing stories, which are the basis behind XP’s
planning game. The customer must also write functional acceptance tests, with
the goal being able to say, “Well, if these run, then I’m confident the system will
run.”25

Tester

Unlike Microsoft’s synch-and-stabilize process, XP does not have separate
testers. The programmers are also the testers. However, there is a role that can
be filled by one of the programmers in making sure the customer’s acceptance
tests are included in the test suites. As Kent Beck says, “An XP tester is not a
separate person, dedicated to breaking the system and humiliating the
programmers. However, someone has to run all tests regularly (if you can’t run
your unit and functional tests together), broadcast test results, and to make sure
that the testing tools run well.”26

Tracker

The tracker is responsible for keeping a project history. He or she keeps a log of
functional test scores, defects reported, who accepted responsibility for each, and
what test cases were added on each defect’s behalf. Additionally, he or she
keeps track of approximately how much time each programmer spent on his or
her task. In this way, when programmers are estimating how much time it will
take to complete a story, the tracker will be able to say, “Two thirds of our
estimates last time were at least 50% too high.”27

Coach

The coach is responsible for the process as a whole. He or she notices when
people are deviating from the team’s process and brings this to the team’s

24 Beck 00, p. 143.
25 Beck 00, p. 144.
26 Beck 00, p. 144.
27 Beck 00, p. 143.

17

attention. Although everyone on the team is responsible for understanding their
application of XP to some extent, the coach is responsible for understanding it
much more deeply—what alternative practices might help the current set of
problems; how other teams are using XP; what the ideas behind XP are; and how
they relate to the current situation.28

Consultant

Since everybody on an XP team shares ownership of the code, XP projects don’t
spawn a lot of specialists. Usually this is a strength, but occasionally the project
will call for a specialist in a particular area. When it does, the team needs a
consultant, usually brought in from the outside.29

Big Boss

The role of the big boss is to provide an environment that is conducive to XP
development. This means that if the boss is not familiar with XP, that he should
trust his team and developers that they know what they’re doing even if it
appears unconventional.

Artifacts
The primary artifact in XP is the code. Everything in the process is tailored to get
out as much code as possible in a given amount of time. However, there are
pieces of non-code artifacts that are often overlooked. Story cards, for example,
are a critical piece of the XP process and can encompass a huge amount of
printed pages if they were to be typed out. Since they are handwritten for the
most part, they are often overlooked as part of the process’s documentation.
There are also code standard documents, tracking and time estimation reports,
and an overall plan document. Of course, the XP mindset says that the
documents are as thin as sparse as possible. Therefore, compared to other
processes presented in this paper, the two Agile processes (XP and Scrum)
definitely have less non-code artifacts.

Tools Support
The main tool support needed for XP is an automated unit testing tool. There are
several quality tools available on the market for a variety of platforms and
languages. Also, there are several types of planning and defect tracking tools
commercially available, so there is really no practical limitation from lack of tool
support in using XP as a development process.

28 Beck 00, p. 145.
29 Beck 00, p. 146-147.

18

2.6 Scrum

Overview
Scrum30 is not so much a development process as a management process. Scrum
can be wrapped around an existing development process, and has been used
quite successfully in combination with XP. By itself, Scrum cannot produce
software; it must be combined with another development process. It can simply
organize how the software is developed.

Scrum’s goal is to deliver as much quality software as possible within a series
(3-8) of short time-boxes (fixed time intervals) called Sprints that typically last
about a month. Each stage in the development cycle (Requirements, Analysis,
Design, Evolution, and Delivery) is now mapped to a Sprint or series of Sprints.
The traditional software development stages are retained for convenience
primarily for tracking milestones. So, for example, the Requirements stage may
use one Sprint, including the delivery of a prototype. The Analysis and Design
stages may take one Sprint each, while the Evolution stage may take anywhere
from 3 to 5 Sprints. The typical Scrum process flow is shown in Figure 3.31

Each Sprint operates on a number of work items called a Backlog. As a rule, no
more items are externally added into the Backlog within a Sprint. Internal items
resulting from the original pre-allocated Backlog can be added to it. The goal of
a Sprint is to complete as much quality software as possible, but typically less
software is delivered in practice. The end result is that there are non-perfect
named stable bases delivered every Sprint.

30 Scrum is sometimes seen in all caps (SCRUM) and just the initial letter capitalized (Scrum). The
name Scrum refers to the mechanism used in rugby for getting an out-of-play ball back into play.
31 The following text is taken almost verbatim from [Beedle].

19

Hector Beltran

Figure 3: Scrum Process Flow32

During a Sprint, Scrum Meetings are held daily to determine on:

1. What items were completed since the last Scrum Meeting.
2. What issues or blocks have been found that need to be resolved.
3. What new assignments make sense for the team to complete until the

next Scrum Meeting.

Roles
There is really only one role in Scrum: the Scrum Master. The Scrum Master has a
number of primary responsibilities, mostly revolving around the master backlog
list which he or she controls. He or she also acts as a firewall, shielding the
development team from upper management or the customer. For example,
nobody is allowed to add to the backlog during a Sprint cycle that has already
started. If upper management or the customer wants to add to it they can, but
they must do so at the expense of cutting the Sprint cycle short and losing much
of the work that had already been accomplished. This shielding from outside
requirements changing for the duration of the Sprint allows the development
team to focus on the current tasks at hand.

32 Diagram taken from the Scrum web site, http://www.controlchaos.com.

20

Probably the most important responsibility of the Scrum Master is to conduct the
daily 15 minute Scrum Meetings, in which he or she tracks progress and
identifies any impediments to progress.

Artifacts
Only one artifact, the master backlog, is presented in Scrum. The backlog can be
as simple as a list in an Excel spreadsheet and requires very minimal
management overhead.

Tools Support
Since there is only a requirement to have a backlog, and not a prescribed method
to produce it, any commercially available spreadsheet program is sufficient for
implementing Scrum.

2.7 Process Summary

What is common amongst all of the processes presented is the concept of
iterations. No longer is software developed in large chunks, as proposed by the
waterfall method. Instead, each iteration builds upon its predecessors building
the system one small piece at a time. Risk is handled by a series of milestones,
checkpoints, Sprint meetings, etc. Each process at its core deals with this
important question on how to manage risks associated with software
development.

21

3 Choose Your Weapon

Having read through the brief overview of the processes discussed in this paper,
you probably have a rough idea of which processes may best apply to your
specific project. The point of this section is to present a series of questions
designed to help guide and direct your thoughts even further so that you may
ultimately come up with one or two candidate development processes that will
best suit your project.

The questions have been divided into four main categories: team and product
size, developers and organization, product, and requirements. Each question has
relative weights assigned to each multiple choice answer for each of the five
processes discussed in this paper. The weights range from 1 to 3, where 1 means
an inherent weakness, 2 is no weakness or strength, and 3 is an inherent strength.
For example, Scrum would score a 3 in a question regarding the amount of
overhead associated with keeping artifacts up to date, but TSP may score a 1. A
running tally of these relative weights can be examined at the conclusion of the
questionnaire to provide you with a ranked list of process suitability. It is
important to note that the order of presentation does not imply the order of
importance. A brief discussion of why the weights are assigned the way they are
follows each question.

3.1 Team and Product Size

Team Size
How many developers and testers are involved in a single team within the project (on
average)?

a) Less than 10
b) 10-20
c) More than 20

Scrum works optimally with teams of 7 or less (“There is plenty of data to show
that team sizes over 7 result in significantly lower productivity. Any team over 7
in size should be split up into multiple SCRUMs” [Sutherland 03]).33 Team size

33 “I described how a few teams in a 500 person development group generated production code at
five times the industry average, while most of the teams who executed SCRUM well, only
doubled productivity over industry average. One of the problems in the large organization is

22

Hector Beltran

in XP is limited to 10 people ([Beck 00] says that you probably couldn’t run an XP
project with 20 programmers, but that 10 is “definitely doable.”) TSP defines five
roles which should optimally be filled by different people (team lead,
development manager, planning manager, quality/process manager, and
support manager). XP defines 4 required roles (programmer, coach, tester, and
tracker), but a programmer can fill any of the other 3 roles. RUP defines a
plethora of roles, but each can be filled by the same person (there are about 30 in
Kruchten’s book). However, “for each worker, a set of expected skills must be
provided by the individual who is designated as the worker” [Kruchten 00, p.
37]. Therefore, a small team working with RUP may have to tailor the process
significantly to accommodate their size.

Matrix

The matrices presented at the end of each question give you the ability to see
how one process ranks in comparison to another. Use the tally sheet in
Appendix A to keep track of your answers.

RUP MSS TSP XP Scrum
a 1 1 3 3 3
b 2 2 1 1 1
c 3 3 1 1 1

a) TSP, XP, and Scrum are preferred, since they are designed for small teams
“out of the box.” RUP and will not work well right out of the box and
would need to be modified for small teams. MSS requires a tester
matched to a developer, so small teams do not work quite as well.

b) RUP and MSS work equally well here. TSP, XP, and Scrum would have to
be seriously modified to let them work with large teams.

c) RUP and MSS excel on large teams compared to the other three processes.
TSP, XP, and Scrum could possibly work, but there is not a lot of industry
data to support this claim. In fact, there are several articles which claim
that agile processes do not ramp up that well to large teams without
serious modification.

that it was culturally prone to a team size of about 15 people and there was a lot of internal
resistance to reducing team size. I now think that this may be the primary reason only a few
teams moved into hyperproductive mode. The hyperproductive teams would always split into
subgroups of 7 or less, while the poorer performing teams insisted on working as a group of 15.”

23

Total Developers
How many developers are involved in the entire project?

a) Less than 40
b) 41-100
c) Hundreds

RUP and MSS can handle hundreds of people over many different teams, which
has been proven with an industry track record. Microsoft continually produces
products that span multiple teams with sometimes hundreds of developers and
testers. There are numerous case studies using RUP in large projects with
hundreds of developers, the Volvo case study for one34. TSP can be used on
large multi-teams but “additional process extensions are required for larger
teams” [SEI-TSP 03]. Agile methods tend to break down past 20-40 people, since
face-to-face communications is critical [Lindvall 02].

Matrix

RUP MSS TSP XP Scrum
a 2 2 2 2 2
b 3 3 1 1 2
c 3 3 1 1 2

a) Any process could work.
b) XP and TSP start to break down at this size. RUP and MSS work well.

Scrum can work, but modifications necessary.
c) RUP and MSS are very effective at this size. XP and TSP effectively don’t

work. Scrum has been used on an 800-person project [Schwaber 02], but
had to be modified to accommodate “scrums of scrums.”

Product Size and Complexity
What is the size of your product in terms of lines of code and complexity?

a) Hundreds to a few thousand (small to medium independent programs such as
Notepad or Adobe Acrobat Reader)

b) Hundreds of thousands to a few million (large business applications such as
Microsoft Word, Adobe Photoshop, or Rational Rose)

34 The Volvo IT group switched to RUP successfully, spanning hundreds of developers working
over several different projects.

24

c) Millions (huge systems such as an operating system or the Space Shuttle
navigation system)

XP is not suitable for projects with over 40,000 LOC (roughly) (that number
comes from using a maximum of 10 people over a fifteen month cycle
programming in Java) [Smith 01]. RUP and MSS can scale to any sized project,
but favor mid to large size projects. RUP and TSP provide specific guidelines as
to what documentation to produce to allow large development. MSS is a little
vaguer as to specific documents, but it certainly is used in large project
development.

Matrix

RUP MSS TSP XP Scrum
a 1 1 1 3 3
b 2 2 2 2 2
c 3 3 2 1 1

a) XP and Scrum have the least amount of overhead with projects of this size
compared to RUP and MSF.

b) Scrum, RUP, MSS, or TSP all work well, but XP is still possible.
c) TSP and RUP may be preferred here as they provide specific guidelines

for producing artifacts (although TSP is not proven on projects of this
size). Although MSS does not provide as much specific guidance, it has
been successfully used in projects of this magnitude. Scrum and XP could
work, but they have not been used on projects of this magnitude (at least
they have not been documented on projects of this magnitude in articles).

3.2 Developers and Organization

Competent and Experienced Developers
What percentage of your developers are “competent and experienced,” where
“competent” means: 1) Possess real-world experience in the technology domain; 2) Have
built similar systems in the past; 3) Possess good people and communication skills?35

a) Less than 10%
b) 10%-25%
c) 25%-33%

35 Lindvall 02, p. 202.

25

d) 33%-100%
It is generally acknowledged that Agile methodologies require a good percentage
of competent people. Lindvall, et al. suggests that at least 25%-33% of
developers should be experienced for an Agile process to be successful. Agile
processes do not require everybody to be highly capable, however. The main
difference between XP and TSP, RUP, and MSS is that XP “derives much of [its]
agility by relying on the tacit knowledge embodied in the team, rather than
writing the knowledge down in plans” [Boehm 02]. TSP is an excellent choice for
teams of novice developers because most of the management and development is
codified in a series of scripts.

Matrix

RUP MSS TSP XP Scrum
a 1 1 3 1 1
b 2 2 2 1 1
c 2 2 2 2 2
d 3 3 1 3 3

a) TSP is the clear winner. RUP and MSS require too much learning curve
for inexperienced developers. XP and Scrum need at least 25%-33% of
“competent and experienced” developers.

b) TSP, RUP, and MSS provide enough guidance for the novice developer.
Scrum and XP would not work well here. XP could work if pair
programming teams were rotated to have the experienced people
program with the novice people, but it would not be as effective.

c) TSP, RUP, and MSS are about equal. XP and Scrum will work, but not as
effectively as the other three, especially on larger projects where this “tacit
knowledge” is unable to be contained in a single mind.

d) XP and Scrum thrive in this environment. TSP may be too simplistic,
especially if the developers are hackers at heart.36 RUP and MSS would
also likely succeed with a larger percentage of experience developers.

36 See [Himanen 01] for a complete and thorough discussion on what constitutes a “hacker.”

26

Level of Hacker Sentiment
Which of the following phrases accurately describes the predominant sentiment on your
team?

a) “We’ve talked about the system long enough, let’s just code the thing. We can
always rewrite stuff that turns out to be wrong faster than if we had spent a lot of
time trying to get it perfect the first time.”

b) “We should plan and design enough of the system to feel confident that we
haven’t overlooked anything critical, but we should not try to get everything
perfect before starting to code.”

c) “We better make sure that we have thought through all of the possible scenarios of
our system before we start writing code. Without a formal plan and design, we
may make serious mistakes that will cost us later down the road.”

XP and Scrum (and all Agile processes) place an emphasis on people over
process: “Individuals and interactions over processes and tools” [Manifesto].
People who are hackers at heart37 prefer coding over documentation and project
management. XP and Scrum are perfectly suited to these types of people. MSS
and RUP tend to take a more structured approach to development, but still allow
a lot of flexibility. Cusumano and Selby state, “We believe no PC software
company has done a better job of keeping some basic elements of the hacker
culture while adding just enough structure to build today’s and probably
tomorrow’s PC software products.… Microsoft still encourages some teams to
experiment and make lots of changes without much upfront planning.”38 TSP is
the most structured, but also places the most emphasis on up-front planning and
design before any code is written.

Matrix

RUP MSS TSP XP Scrum
a 1 3 1 3 3
b 2 2 1 2 2
c 3 2 3 1 1

a) MSS, XP, and Scrum. RUP and TSP require more up-front planning and
design.

37 See [Himanen 01] for a complete and thorough discussion on what constitutes a “hacker.”
38 Cusumano 95, p. 16.

27

Hector Beltran

b) RUP and MSS are favored, but Scrum and XP will work too. TSP stresses
that you shouldn’t start coding until everything has been thought
through.

c) This sentiment typifies TSP, but RUP and MSS accommodate this
sentiment just as well. XP and Scrum were invented to avoid this
sentiment.

Management Style
What kind of management style best suits your project?

a) Macro-management: Only a few guidelines are outlined by the manager and
developers have to fill in the gaps on their own.

b) Median-management: Most of the important aspects of the project are
documented by the manger, but developers still have a lot of leeway in designing
and implementing the system.

c) Micro-management: Almost all of the aspects of the project are documented and
developers don’t have much control over what they write.

There is a general stereotype that RUP is “heavyweight” and XP is “lightweight.”
As Smith’s article (RUP vs. XP) points out, there really is no difference between
the two as far as what is produced as artifacts. However, while this
differentiation between RUP and XP seems to be mythical, XP “feels” lightweight
to programmers in comparison to RUP. Paraphrasing the words of an
experienced developer, Alistair Cockburn says, “A small, rigorous methodology
may look the same as an agile methodology, but it won’t feel the same” [Cockburn
01]. XP gives the programmer role a lot of control over his own development,
whereas RUP tends to put non-programming roles in control (use case designer
or architect, for example). MSS, embodied in Microsoft’s internal process, seems
to balance the tension between unguided, self-motivated development and
micro-managed development. TSP sways to the micro-managed side, but in an
interesting way. The roles are so well defined that there is little room for
variance. However, the person in the role is free to do things differently; it just
must be done in a structured way. In a sense, then, the person is micromanaging
himself.

Matrix

RUP MSS TSP XP Scrum
a 2 3 1 3 3
b 3 3 2 2 2
c 2 2 3 1 1

28

a) MSS, XP, and Scrum. RUP could work, but not as well. TSP doesn’t work
in this kind of environment.

b) MSS and RUP come configured this way “out of the box.” Scrum and XP
from the light-weight side, and TSP from the heavy-weight side can be
tailored to become middle-weight.

c) TSP. MSS and RUP could be configured this way. Scrum and XP by their
nature do not allow micro-managing.

Organization-Wide Processes
How important is it to your organization to develop organization-wide processes, rather
than project-specific processes?

a) Critical. The company wants to protect against staff turnover by retaining the
knowledge acquired on each project.

b) Somewhat important. Although there is occasional staff turnover, there are
enough people left to retain the collective knowledge in their minds.

c) Not important at all. Your organization is a small company where a high staff
turnover would not matter because the company would most likely go out of
business anyway.

RUP has to be configured as a required step in RUP itself, which promotes
tailoring the process (and documenting it) at the front-end of the project lifecycle.
XP is less formal in its administration, and therefore spreads out the learning
curve and adoption over the life of the project. “An organization will also, more
than likely, tailor RUP for organization-wide application on particular types and
sizes of projects, and will use the results in several projects… XP does not
obviously motivate the capture of ‘corporate memory,’ leaving an adopting
organization (if it does not save its process experience) vulnerable to staff
turnover” [Smith 01, p. 20]. MSS is more similar to RUP than XP in this regard.
In fact, it came about because in the early days of Microsoft, key players leaving
the team would take a large chunk of collective knowledge with them. TSP is
very similar to RUP.

Matrix

RUP MSS TSP XP Scrum
a 3 3 3 1 1
b 2 2 2 2 2
c 2 2 2 3 3

29

a) RUP, MSS, or TSP. Scrum and XP can work too, but steps have to be
taken to build in process documentation into the Scrum sprints and XP
cycles.

b) Any process could work here.
c) XP and Scrum require no changes to their process. RUP, MSS, and TSP

can still produce their process documentation with no adverse effects
other than higher overhead where it may not be required.

New Process Adoption
What level of confidence do you require before adopting a new process for your project?

a) The process must be “tried-and-true,” having been around for several years and
used in a variety of market segments.

b) The process is fairly mature, but has not been used in a wide variety of market
segments.

RUP, MSS, and TSP have been around longer than XP and Scrum. RUP has the
biggest variance of market segments, being used in the automotive, medical,
financial, educational, and government markets. MSS has been used
predominately in the business and consumer markets. TSP has been used mostly
in government and educational settings. MSS, TSP, XP, and Scrum have about
the same level of market variance. RUP and XP have the largest market share (in
terms of number of different companies using them) in comparison to Scrum,
MSS, and TSP.

Matrix

RUP MSS TSP XP Scrum
a 3 3 1 2 1
b 2 2 2 2 2

a) RUP and MSS first, then XP, then Scrum and TSP.
b) This describes all of the processes but RUP, although RUP can be used

here too.

3.3 Product

Type of Product
What type of product do you have?

30

Hector Beltran

a) Life-critical, such as an air traffic control system or patient monitoring system
b) Non life-critical, but mission-critical system, such as a stock exchange or banking

application
c) An embedded system that is neither life- nor mission-critical
d) An application that is neither life- nor mission-critical

XP and Scrum do not have enough industry experience in mission- or life-critical
systems. Scott Ambler, the originator of agile modeling says, “I would also be
leery of applying agile modeling to develop life-critical systems, such as an air
traffic control system or patient monitoring system, simply because I don’t work
on such projects and have no insights into how well AM will work on them”
[Ambler 01]. Theoretically, “projects developed with XP can adhere to strict (or
safety) requirements” [Lindvall 02], but there isn’t enough experience yet in this
arena.

Matrix

RUP MSS TSP XP Scrum
a 3 2 3 1 1
b 2 2 2 2 2
c 3 3 2 2 2
d 2 2 2 2 2

a) TSP because of its strict documentation and review process, although it
has not been used in this type of application before (at least it is not
documented). RUP can certainly accommodate life-critical systems and
has been used in the medical and automotive industries. MSS could be
tailored for life-critical systems, but anybody who has used a Microsoft
product may not feel completely comfortable entrusting his or her life to
it.39

b) Any process could work just as well.
c) RUP or MSS. Scrum, XP, and TSP could work, but not enough industry

experience to back the claims up.
d) All of the processes have been successfully used for these types of

applications.

39 This is not an attack against Microsoft. In fact, it should be noted that the author now works at
Microsoft.

31

3.4 Requirements

Requirements Stability
How stable are the requirements from the outset of the project?

a) Emergent and rapidly changing

b) Knowable early and largely stable

It is rare that a project has stable requirements over the lifetime of the project.
Some projects, however, really do have fairly stable requirements, such as some
government projects. All of the processes seek to enable the practitioners to
respond to requirements changes over the lifetime of the project by introducing
incremental development, but some do it better than others. The Agile
processes, Scrum and XP, were invented for just this purpose. They are on the
extreme end of the spectrum, where new requirements can be introduced daily
in the case of XP and monthly in the case of Scrum. MSS also facilitates product
requirements changes, mostly in response to customer and market trends, but
only allows it a few times over the course of the project. RUP and TSP are
roughly equivalent in this respect. Changes are allowed, but they must be
justified and carefully documented.

Matrix

RUP MSS TSP XP Scrum
a 2 2 2 3 3
b 2 2 2 2 2

a) XP and Scrum are the clear winners for this situation. This is why they
were invented and are tailored to rapidly changing requirements. RUP,
MSS, and TSP can accommodate this, but not as well.

b) Any process works well here.

Requirements Traceability
How important is requirements traceability and formal documentation (legal issues,
contract compliance, FDA or other governmental approval, etc.)?

a) Extremely important. Without requirements traceability and formal
documentation our project is not successful.

b) Somewhat important. To ensure that we’ve delivered everything promised to the
customer in our contract, we need to verify that all of the requirements have been
traced from inception to completion.

32

c) Not really important. Requirements need to be met, but it is not important that
they be traced. Formal documentation is not necessary, but does not hinder the
product either.

RUP places a premium on requirements traceability and formal artifacts. In fact,
Rational has a product specifically tailored to requirements traceability
(RequisitePro). TSP also has requirements traceability built into the process by
regularly updating the required SRS (Software Requirements Specification).
MSS, like TSP and RUP, has a formal SRS and Vision Document, but there is
nothing prescribed in the process to trace requirements. XP and Scrum do not
trace requirements. In fact, once a requirement is no longer needed, it is dropped
from the story cards and the master Scrum list, with no history being kept at all.

Matrix

RUP MSS TSP XP Scrum
a 3 2 3 1 1
b 2 2 2 1 1
c 1 2 1 3 3

c) RUP and TSP excel in this area. MSS works well. XP and Scrum can be
used in this way, but it goes against the spirit of the Agile methodology.

d) RUP, MSS, and TSP work equally well. XP and Scrum still do not fit this
category.

e) RUP and TSP could be tailored to not have as much formal
documentation. MSS is neither good nor bad here. XP and Scrum are
perfectly suited to this environment.

33

4 Conclusion

So, which “weapon” will you ultimately end up using to fight your battle? Well,
that’s a question that only you can answer, but hopefully at this point you have a
much better idea of what process best suits your particular project. One of the
themes of this paper has been that it is impossible to say that one particular
process is “better” than another. Each process has its inherent strengths and
weaknesses and is suited to particular projects, teams, and customers than
others. The intent of this paper was not to glorify one method over another, but
simply to provide accurate information about what industry has found to be
desirable and undesirable about each. Proponents of each method would argue
that their method of choice is applicable to any type of application, using any
type of team, and delivering software to any type of customer. What is
enlightening, however, is what industry has found through experience about
each method.

A sword will hack off an arm just as well as an axe, but a cannon may not be the
best weapon for hand-to-hand combat. Each weapon serves its intended
purpose and they are all needed. It is the same with development processes.
Make sure you understand your project and the needs of your team before
deciding on a process. In short, make sure you “choose your weapon wisely.”

34

Appendix A – Question Tally Sheet

Use this tally sheet as you answer the questions to write down the relative scores
for each process. When you complete the questionnaire, add each column’s
scores to come up with a ranked list of processes that suit your particular project.
The highest score is the most suitable, and the lowest score is the least suitable. It
is important to note, however, that just because a particular process scores lower
than another, it can still work for your project. The purpose of this questionnaire
is not to give a definitive answer to your process dilemma, but rather to provide
a starting point for your research.

Question RUP MSS TSP XP Scrum
Team Size

Total Developers

Product Size and
Complexity
Competent and
Experienced Developers
Level of Hacker
Sentiment
Management Style

Organization-Wide
Processes
New Process Adoption

Type of Product

Requirements Stability

Requirements
Traceability

Totals

35

Appendix B – Sample Tally Sheets

To test out my questions and relative weights, I decided to run the questionnaire
against two of the more successful Studio projects in the Master of Software
Engineering Program at Carnegie Mellon University. This questionnaire was
filled out after-the-fact, that is, after the teams had already completed their
projects using the process they had chosen at the beginning of the school year.
Both teams agreed that the process they had used was very successful for them
and would most likely use the same process again on a similar project.

teamMatrix – Vesmark Smartware Project

Vesmark is a financial planning company that has a patented paper-based “five-
step model,” in which a person can sit down and forecast his financial future.
The MSE team’s task was to translate the paper-based algorithms to a software
system. The application was highly graphical and had to have an easy and
compelling user interface. Additionally, Vesmark’s business goals changed
frequently and rapidly as the company sought after funding. The team decided
to go with RUP in the first semester and found that the process did not work
very well for them. They then switched to Scrum in the second semester to
which they attribute an instant success. In the final summer semester, the team
used a combination of Scrum for their management process and a modified XP
as their development process. The results of their questionnaire are shown
below.

Question RUP MSS TSP XP Scrum
Team Size 1 1 3 3 3

Total Developers 2 2 2 2 2

Product Size and
Complexity

1 1 1 3 3

Competent and
Experienced Developers

2 2 2 2 2

Level of Hacker
Sentiment

2 2 1 2 2

Management Style 2 2 3 1 1

Organization-Wide
Processes

2 2 2 3 3

36

Question RUP MSS TSP XP Scrum
New Process Adoption 2 2 2 2 2

Type of Product 2 2 2 2 2

Requirements Stability 2 2 2 3 3

Requirements
Traceability

1 2 1 3 3

Totals 19 20 21 26 26

Interestingly, the results of the questionnaire confirm that both Sprint and XP are
the best suited processes to teamMatrix’s project and RUP is the least suited.

Charlatans – SEI Wrist-Camera Project

The Charlatans had a rather unique project. The clients were researchers at
Carnegie Mellon’s SEI (Software Engineering Institute) whose primary objective
for the project was not to deliver the final product, but rather to gather research
about how a team works to produce the final product. They were given a set of
fixed requirements at the beginning of the project and were told that these
requirements would not change and were not negotiable. The team decided to
use the TSP, which is confirmed by the results of their questionnaire below.

Question RUP MSS TSP XP Scrum
Team Size 1 1 3 3 3

Total Developers 2 2 2 2 2

Product Size and
Complexity

1 1 1 3 3

Competent and
Experienced Developers

1 1 3 1 1

Level of Hacker
Sentiment

3 2 3 1 1

Management Style 3 3 2 2 2

Organization-Wide
Processes

3 3 3 1 1

New Process Adoption 2 2 2 2 2

37

Question RUP MSS TSP XP Scrum
Type of Product 2 2 2 2 2

Requirements Stability 2 2 2 2 2

Requirements
Traceability

2 2 2 1 1

Totals 22 21 25 20 20

38

References

[Ambler 01] Ambler, Scott W., “When Does(n’t) Agile Modeling Make
Sense?” 2001, http://www.agilemodeling.com/essays/
whenDoesAMWork.htm.

[Beck 00] Beck, Kent, Extreme Programming Explained, Embrace Change,
Addison-Wesley, Upper Saddle River, NJ, 2000.

[Beedle] Beedle M, Devos M, Sharon Y, Schwaber K, Sutherland J,
“SCRUM: An extension pattern language for
hyperproductive software development,” Available on the
web at http://jeffsutherland.com/scrum/scrum_plop.pdf.

[Boehm 88] Boehm, Barry W., “A Spiral Model of Software Development
and Enhancement,” IEEE Computer, 5, May 1988, pp. 61-72.

[Boehm 02] Boehm, Barry W., “Get Ready for Agile Methods, with
Care,” IEEE Computer, 1, January 2002, pp. 64-69.

 [Cockburn 01] Cockburn, Alistair and Highsmith, Jim, “Agile Software
Development: The People Factor,” Computer, November
2001, pp. 131-133.

[Cockburn 02] Cockburn, Alistair, Agile Software Development, Addison-
Wesley, Boston, MA, 2002.

[Constantine 01] Constantine, Larry, “Methodological Agility,” Software
Development, June 2001, pp. 67-69, http://
www.sdmagazine.com/documents/s=730/sdm0106f/0106f.
htm.

[Cusumano 95] Cusumano, Michael A. and Selby, Richard W., Microsoft
Secrets, How the World’s Most Powerful Software Company
Creates Technology, Shapes Markets, and Manages People, The
Free Press, New York, NY, 1995.

[Himanen 01] Himanen, Pekka, The Hacker Ethic, A Radical Approach to the
Philosophy of Business, Random House, New York, NY, 2001.

[Humphrey 95] Humphrey, Watts S., A Discipline for Software Engineering,
Addison-Wesley, 1995.

39

[Humphrey 00] Humphrey, Watts S., Introduction to the Team Software Process,
Addison-Wesley, Reading, MA, 2000.

[Jacobson 99] Jacobson, Ivar, Booch, Grady, and Rumbaugh, James, The
Unified Software Development Process, Addison-Wesley, Upper
Saddle River, NJ, 1999.

 [Jeffries 01] Jeffries, Ron, Anderson, Ann, and Hendrickson, Chet,
Extreme Programming Installed, Addison-Wesley, Upper
Saddle River, NJ, 2001.

[Kruchten 00] Kruchten, Philippe, The Rational Unified Process, An
Introduction, Second Edition, Addison-Wesley, Boston, MA,
2000.

[Kruchten 01] Kruchten, Philippe, “What Is the Rational Unified Process?”
Rational Software Corporation, 2001, http://
www.therationaledge.com/content/jan_01/f_rup_pk.html.

[Lindvall 02] Lindvall M, Basili V, Boehm B, Costa P, Dangle K, Shull F,
Tesoriero R, Williams L, Zelkowitz M, “Empirical Findings
in Agile Methods,” D. Wells and L. Williams (Eds.):
XP/Agile Universe 2002, LNCS 2418, pp. 197-207, 2002.

[Manifesto] Agile Alliance, “Manifesto for Agile Software
Development,” 2001, http://www.agilemanifesto.org/.

[Rational 01] Rational Software Corporation, “Rational Unified Process,
Best Practices for Software Development Teams,” Rational
Software White Paper, TP026B, November, 2001.

[Schwaber 02] Schwaber, Ken and Beedle, Mike, Agile Software Development
with SCRUM, Prentice-Hall, 2002.

[SEI-TSP 03] Software Engineering Institute (SEI), “The Team Software
Process (TSP),” Pittsburgh, PA, July 14, 2003, http://
www.sei.cmu.edu/tsp/tsp.html.

[Smith 01] Smith, John, “A Comparison of RUP® and XP,” Rational
Software White Paper, Cupertino, CA, Rational Software
Corporation, 2001.

[Sutherland 03] Sutherland, Jeff, “SCRUM: Keep Team Size Under 7!”
February 6, 2003, http://www.jeffsutherland.org/scrum.

40

[Volvo] Grahn, Goran V. and Karlsson, Boris, “Implementing RUP in
an Organization—The Volvo IT Approach,” Rational
Sofware Whitepaper, http://www.rational.com/
media/whitepapers/rup_volvo.pdf.

 [Wake 02] Wake, William C., Extreme Programming Explored, Addison-
Wesley, Upper Saddle River, NJ, 2002.

[Wheeler 01] Wheeler, David A., “More Than a Gigabuck: Estimating
GNU/Linux's Size,” June 30, 2001, http://
www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

41

