
MIT	

Global	
 Startup	
 Labs	

México	
 2013	

Lesson 1 – Intro to Python

http://aiti.mit.edu

Agenda

•  What is Python? and Why Python?
•  Basic Syntax
•  Strings
•  User Input
•  Useful Data Structures
•  Introduction to Functions

2

What is Python?

3

Python is…

•  …interpreted. Languages like C/C++ need
to translate high-level code to machine
code…

Compiler

High-Level Code

Machine Code

a = b + c;

…
ld $r1, a
ld $r2, b
add $r3, $r1, $r2
st a, $r3
…

4

Python is…

•  …which means that a program has to be
compiled separately for each type of
machine: program

compiler
compiler

compiler

Win
Mac

Unix

machine code machine code
machine code

5

Python is…
•  Python code is compiled to an intermediate

format called bytecode, which is
understood by a virtual machine/interpreter.

Python Source (.py)

compiler

Python Bytecode (.pyc)

6

Python is…

Python Program

compiler

Python bytecode

Win

Mac

Unix

Interpreter

Interpreter

Interpreter

7

Why Python?

8

Python because…

•  Portable and architecture-agnostic
•  Convenient built-in functions and data

structures
•  Syntax is readable and fast to write

if (x)
{

 if (y)
 {
 a();
 }
 b();

}

if x:
 if y:
 a()
 b()

9

Python because…

•  Great for rapid prototyping
– No separate compile step
– No need to explicitly specify method argument

types beforehand (due to dynamic typing)

10

Python for us, because…

•  We want each of you to reach millions of
users, and don’t want to waste time
building the pipes and plumbing

•  Python is supported by a number of good
frameworks, led by
– Django
– Heroku
– Google AppEngine

11

The (Ideal) Development Cycle

•  Clearly specify the problem:
–  Inputs, input manipulation, outputs

•  Design the solution:
– E.g. what algorithms, data structures

•  Implementation
•  Test

12

The (Real) Development Cycle

•  As above, but faster.
– Python, as a dynamically typed, programming

language is perfect for rapid prototyping
•  Be prepared to throw away one (or more!)

prototypes
– Often you learn crucial things about the

problem as you code which cannot be fixed
without starting from scratch.

13

Basic Syntax

14

Syntax

•  Blocks are delimited with whitespace:
specifically, four spaces (and no tabs)

if x:
 if y:
 a()
 b()

count = 0
for i in range(0:5)
 count += i

15

Syntax

•  Semicolons are only used to separate
multiple statements on the same line,
which is discouraged:

if (x)
{

 a();
 b();

}

if x:
 a(); b()

if x:
 a()

 b()

No

Yes

16

Syntax

•  Single line comments are denoted with
hash (#), multiline with three quotes ”””

This is a comment
foo()

”””
This is a
longer comment
”””
foo()

17

Interaction
•  Python has an interactive console which is

great for tinkering

•  …etc

$ python
Python 2.7.1+ (r271:86832, Apr 11 2011, 18:13:53)
[GCC 4.5.2] on linux2
Type “help”, “copyright”, “credits” or “license” for
more information
>>> a = 1
>>> a
1
>>> type(a)
<type ‘int’>
>>>

18

Variables
•  Strings
>>>	
 x	
 =	
 ‘Hello	
 World’	

•  Numerics
>>>	
 x	
 =	
 3.1415	

•  Booleans
	
 >>>	
 x	
 =	
 True	

•  Lists
>>>	
 x	
 =	
 [‘Hello’,	
 True,	
 3.1415]	

•  And many more…

19

Variables
•  Python is a “dynamically typed” language

–  A variable’s data type is not declared.
–  “Statically typed” languages like Java must declare a

variable’s data type

String	
 x	
 =	
 “Hello	
 World”;	

•  Get a variable’s data type with the type function
	
 >>>	
 x	
 =	
 ‘Hello	
 World’	

	
 >>>	
 type(x)	

	
 <type	
 'str'>	

 20

Strings

21

Strings

•  A string is a piece of text.
•  Encase with quotes

– Single-quotes
	
 >>>	
 x	
 =	
 ‘abc’	

– Double-quotes
	
 >>>	
 x	
 =	
 “abc”	

– Triple single-quotes or triple double-quotes
	
 >>>	
 x	
 =	
 ‘‘‘abc’’’	

 >>>	
 x	
 =	
 “““abc”””	

22

Strings

•  Use double-quotes to encase text
containing single-quotes
	
 >>>	
 “It’s	
 a	
 string	
 with	
 a	
 single-­‐
quote!”	

	

•  What is wrong with this statement?
	
 >>>	
 x	
 =	
 abc	

23

String as a sequence
•  You can access the characters one at a time

using the bracket [] operator

fruit = “banana”	

letter = fruit[1]	

print letter	

1	

2	

3!

b � a� n � a� n � a�

0 1 2 3 4 5 index!

24

String operators
•  Applied to strings, produce strings

str1 = 'kit '	

str2 = 'kat '	

str3 = str1 + str2	

str4 = str3 * 2	

c = str1[0] 	

c = str1[4]!

1	

2	

3	

4	

5	

6!

!
!

'kit kat '	

'kit kat kit kat '	

'k'	

!IndexError: string index

out of range!

k � i� t � �

0 1 2 3

str1!

index!

25

•  Returns the part of the string from the "m-th" character to the "n-
th" character, including the first but excluding the last.

0 1 2 3 4 5 6 7 8 9 10

The slicing operator [m : n]

fruit � S T R A W B E R R Y

index�

str1 = fruit[2:5]	

str1 = fruit[:5]	

str1 = fruit[5:]	

str1 = fruit[6:-1] !

1	

2	

3	

4!

'RAW'	

'STRAW'	

'BERRY'	

'ERR'!

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

26

User Input

27

User Input
•  raw_input prints a prompt to the user and

assigns the input to a variable as a string

•  input can be used when we expect the
input to be a number

name = raw_input('What is your name?') !

age = input('How old are you?') !

28

Control Statements

29

Control statements

•  Conditionals: control which set of statements is
executed.
–  if / else

•  Iteration: control how many times a set of
statements is executed.
–  while loops
–  for loops

30

The if statement

•  If the condition is True, the body gets executed.
•  Otherwise, nothing happens.

if CONDITION:	

 BODY!

any boolean expression �

any set of statements�

if x < 0:	

 print 'x is negative'!

indentation is important �

31

The if/else statement

•  If the condition is True, body1 gets executed.
•  Otherwise, body2 gets executed.

if CONDITION:	

 BODY1	

else:	

 BODY2!

if x < 0:	

 print 'x is negative'	

else:	

 print 'x is positive or zero'!

any set of statements	

32

Chained conditionals

•  If the condition1 is True, body1 gets executed.
•  Otherwise, if condition2 is True, body2 gets executed.
•  If neither condition is True, body3 gets executed.

if CONDITION1:	

 BODY1	

elif CONDITION2: 	

 BODY2	

else:	

 BODY3!

any set of statements�

another boolean expression �

33

An example
a = False	

b = True	

if a and b:	

 print 'I love red.'	

elif a or b:	

 print 'I love green.'	

else:	

 print 'I love blue.'	

 print 'I also love purple.'!

What does this output?	

 I love green.!

34

An example
a = False	

b = True	

if a and b:	

 print 'I love red.'	

elif a or b:	

 print 'I love green.'	

else:	

 print 'I love blue.'	

print 'I also love purple.'!

What does this output?� I love green.	

I also love purple.!

35

Nested conditionals

•  Can get confusing. Indentation helps to keep
the code readable and the python interpreter
happy!

if is_adult:	

 if is_senior_citizen:	

 print 'Admission $2 off.'	

 else:	

 print 'Full price.'	

else:	

 print 'Admission $5 off.'!

if is_adult:	

 if is_senior_citizen:	

 print 'Admission $2 off.'	

 else:	

 print 'Full price.'	

else:	

 print 'Admission $5 off.'!

if is_adult:	

 if is_senior_citizen:	

 print 'Admission $2 off.'	

 else:	

 print 'Full price.'	

else:	

 print 'Admission $5 off.'!

outer conditional	

inner conditional	

36

The while loop

•  As long as the condition is true, the body gets
executed repeatedly.

•  The first time the condition is false, execution
ends.

while CONDITION:	

 BODY!

any boolean expression �

any set of statements�
indentation is important �

37

The while loop

•  What does this output?

i = 0	

while i < 3:	

 print i	

 i = i + 1!

0	

1	

2!

38

The break statement
•  Immediately exits the innermost loop.
while True:	

 line = raw_input('>>> ')	

 if line == 'done':	

 break	

 print line	

print 'Done!'!

>>> not done	

not done	

>>> done	

Done!!

39

Useful Data Structures

40

•  A list is a sequence of values.
•  Each element (value) is identified by an index.
•  The elements of the list can be of any type.

Lists

tens = [10, 20, 30, 40]	

cities= [’Manila', ‘Cebu', ‘Boracay’]	

empty = []!

mixed = ['hello', 2.0, 5, [10, 20]]!

•  Lists can have mixed types in them, even other
lists (nested).	

41

•  Use the [] brackets

Creating a list

list_of_ints = [10,20,30,50]!

list_of_ints!10! 20! 30! 50!

four	

int values	

only one name	

42

•  Individual elements are accessed using the [] operator.

Accessing list elements

list_of_ints[0] = 17!

list_of_ints!17! 20! 30! 50!
now has	

value 17	

Lists are mutable!	

Assigns the first element to 17	

List indexing 	

starts at 0, not 1!	

new_var = list_of_ints[0]! accesses the value	

of the first element	

30! 50!17!list_of_ints! 20!

new_var!17! now also has	

value 17	

index	

0 1 2 3!

43

•  We can use the print function to output the
contents of the list:

Printing a list

cities = [’Cali’, ‘Bogotá’, ‘Medellin’]	

numbers = [17, 123]	

empty = []	

print cities, numbers, empty!

[’Cali’, ’Bogotá’, ’Medellin’] [17, 123] []!

44

Lists vs. Strings

•  Lists are mutable - their contents can be
modified

•  Strings are immutable

name = 'Lenny'	

name[0] = 'J'!

TypeError: object doesn't support item assignment!

45

Control Structures

46

The for loop

•  Example:

for ELEMENT in SEQUENCE:	

 BODY!

any set of statements	

for i in [0,1,2,3]:	

 print i!

 sequence element	

Sequence of values – list, string, etc.	

0	

1	

2	

3!

indentation is important	

47

Using range

•  What does this output?
0 0	

1 1	

2 4	

3 9!

for i in range(4):	

 sq = i * i	

 print i, sq!

for INDEX in range(n):	

 BODY!

any set of statements	

 index variable	

generates sequence of n values	

starting at 0 and incrementing	

by 1 	

48

Using range

•  What does this output?

1 	

3 	

5 !

for i in range(1, 7, 2):	

 print i!

for INDEX in range([start], stop, [step]):	

 BODY!

any set of statements	

 index variable	

generates sequence of values	

start and step are optional 	

49

For loop and strings

•  Iterating through the characters of a string

str1 = 'stressed'	

for c in str1:	

 print c,!

s t r e s s e d!

50

For vs While

•  For loop is primarily used
•  for iterating over a sequence of values
•  when we know the number of iterations in advance

•  While loop is primarily used
•  when we don't know the number of iterations in

advance (they could be controlled by user input)

51

Introduction to Functions

52

Functions
•  A function is a sequence of statements that has been

given a name.

def NAME (PARAMETERS):	

 STATEMENTS!

any set of statements�

function name�
list of function	

arguments�

function	

definition �

function signature�

53

Now you are all set to work on
Lab 1! J

54

Lab 1
1.  Calculate Fibonacci number

fib(n)
2.  Display the day of the week given a date

zellers()
3.  Implement the Rock Paper Scissors game

rock_paper_scissors()
4.  Encode a given string using the Caesar

cipher
cipher()

55

Next Class

•  More on Functions
•  Object Oriented Programming
•  Exceptions
•  Regular Expressions
•  How to be a Python Ninja!

56

