
6.005 Project 3: GUI Chat Second Deliverable
Group 17: David Wen, Olivia Bishop, Wesley Graybill

May 8, 2009

Code Design

Server Design:

One of the key ideas behind our server design is the use of a centralized queue that stores
all commands that need to be executed by the server. All classes that need to execute a
command on the server are passed this queue and may add to it as needed. We then have
one CommandHandler class that executes all commands added to this queue.
Alternatively, we could allow each thread to execute its own commands. However,
without the use of locks, this could lead to an inconsistent state on the server. The use of
this single CommandHandler class ensures that only one thread will be attempting to
change the server state at a time.

Additionally, in order to eliminate concurrency issues of adding to the queue, we will use
a BlockingQueue from the java.util.concurrent package. This queue is thread-safe and
will make it so that no two threads will be adding to the queue at a time. The combination
of the CommandHandler and use of a BlockingQueue will effectively remove all
concurrency problems in the server.

Below is a description of all primary classes of the server:

Server – The entrance point into the chat server. The Server creates and starts a thread
running the CommandHandler and then listens on the socket for clients to
connect. When clients connect, the Server sends a NewUser Command to the
CommanHandler. The NewUser Command creates both an InputHandler and an
OutputHandler for the client.

ServerState – The ServerState stores all states of the server. It manages all users and
conversations, and has methods for adding and removing users and conversations.

Command – An interface that represents a command that the CommandHandler may
execute. Each implementing class includes an execute method that handles
executing the command. Command implementations include NewUser,
NewConv, SetUsername, JoinConv, LeaveConv, Message, and RemoveUser.

CommandHandler – The CommandHandler pulls Commands off of the queue and calls
the execute method of each command.

Conversation – A representation of a conversation. A Conversation contains a list of the
users involved and methods for adding and removing users from the conversation.

ServerProtocol – The ServerProtocol is used by the InputHandler to add Commands to
the queue. The protocol has a parse method that accepts a string as input and
outputs the Command that is represented by the string.

InputHandler – The InputHandler is connected to the socket of a client. It listens to the
InputStream of the socket and uses the parser of the ServerProtocol to add
Commands to the central command queue.

OutputHandler – The OutputHandler is connected to the socket of a client and controls
output to the client’s OutputStream. It has methods for each type of message in
the protocol that construct the message and send it on the OutputStream.

Server Dependency Diagram:

Client Design:

Our client design is very similar to that of our server. The main differences are these:

– Instead of a ServerState, there is a ClientState, which carries information relevant
to the client, such as the list of users logged in and the list of conversations
available.

– The Commands are different, they are those that the client receives from the
server.

– The InputHandler handles the stream from the server, and the OutputHandler
writes to the server.

– There is a GUI, which the ClientState changes, and which passes data to the
OutputHandler, which writes to the server. It will contain public methods for
changing itself, such as those to add a conversation or user.

For the code that is reusable, we will recreate the classes in the appropriate packages for
the client (copy and paste). This is because we want to be able to package the software
separately, i.e. the client does not need the server's code to run and vise versa.

There were many different code designs we considered for integration of the GUI into the
client model. Some consisted of intermediate classes for control, in order to make sure
the data in the ClientState and that in the GUI matched at all times. We decided, though,
that for what we are doing, this is not necessary. Others included a UI interface for the
best possible abstraction. This will be difficult, as we need to take precautions to keep
everything decoupled, but we think this is necessary for best results. It will make the
code flexible (another GUI can be switched out if necessary), and testable (see testing
section with the mock GUI). We also considered making Commands directly dependent
upon the GUI as well as the Client State, but decided against this because we wanted to
keep the GUI and ClientState updated and not allow otherwise. We ended with a design
where the Commands act on the model (ClientState), and the ClientState acts upon the
GUI by calling methods in it. This has the disadvantage that much of the data will be
stored twice (in the model and the view), but is much less dependent and complicated
than a system where the GUI listens to the ClientState for changes.

Note: on both the server and client diagrams, dashed lines represent weak dependencies,
where the class only depends on the existence of the class it is linked to. For instance, the
Server creates and begins running the CommandHandler, but does not depend on any of
its functionality.

Client Dependency Diagram:

Testing Strategy

Our instant messaging has a server and a client component. We have designed both
components so that they can be tested independently. The client and server communicate
only through our text-based protocol. We just require that given an input, the server’s
state changes correctly and it outputs the right response. For the client, we require that
given an input, the client state changes correctly and the GUI reflects this change. Also,
we want to make sure that a client action on the GUI generates the proper output
message.

We can automate testing on the server. We do this by initiating a server and feeding in
specified inputs. Testing would then assert that the server’s state changes appropriately
and also assert that the server response is correct.

We can also automate testing on the client to a degree. By creating a client and feeding in
specified inputs, we can check on its state to assert that it is changing correctly. However,
we can’t automate assertion that the GUI looks correct. We can, though, create a mock
GUI that doesn’t actually have any visual components, but gives indication whenever its
methods are called. By having our client use this mock GUI in our testing phase, we can
check on the state of the mock GUI to ensure that the correct GUI methods are at least
being called.

We must create manual tests for the client as well. These manual tests will deal with
ensuring that a user action on the GUI, such as adding a conversation or sending a
message in a conversation, results in the correct output message to server. We will have to
manually perform the action on the GUI. Also, we will need to create manual tests to
ensure that the GUI is stable. For example, adjusting the size of windows should not
break the GUI or make it unusable. Also, dialogs should work appropriately and never
leave the user stuck in a state he or she can’t get out of.

Demo

We have implemented much of the server side of the code, and we have a mock GUI that
displays hard-coded information but demonstrates how our client program will look. See
code.

	Code Design
	Testing Strategy
	Demo

