

6.005 Project 3: GUI Chat First Deliverable
Group 17: David Wen, Olivia Bishop, Wesley Graybill

May 4, 2009

Team Contract

Goals:

Our goal is to complete the specifications in a timely manner and get an A on the project.
If time permits, we may try for the award. We will encounter time obstacles, as it is the
end of semester and we will all be very busy.

Meeting Norms:

Over the weekend, we can meet during the day, and during the week, we can meet in the
evenings. We all have evening commitments, but around those we are mainly free. We
will have meetings in Burton Conner, since we all live there and it is convenient. Before
the second deadline, we will meet two or three more times, and for the third deadline we
will have more individual work, but meet periodically also. It is okay to eat during
meetings. We will rotate recording minutes.

Work Norms:

We anticipate it will take 20 hours a week to make this project successful. Work will be
distributed evenly. When we have a design, we will distribute coding assignments. In
future meeting minutes, we will record who is designed to what task. If someone does
not follow through on a commitment, we will send a strongly worded email to them. We
agree that our code should be clear and commented, and we don't expect difference
opinions on the quality of work. To deal with different work habits, we will set smaller
deadlines to have things done at the same time.

Decision Making:

We will make decisions by discussion, and will for the most part want consensus.

Abstract Design

Definition of Conversation:

We decided to define our conversations as chat rooms rather than one-on-one
conversations. All conversations are public, and any user can join a conversation by
clicking on it. The list of conversations will be displayed as a list in a pane in the GUI.
Users in a conversation see a list of other users in that conversation, but other users only
see the number of users in a given conversation. Users may be involved in more than one
conversation at a time. Also, the server does not keep track of old messages in the data
structure for the conversation, so when a user joins a conversation, they only see
messages received from that point on.

Design Decisions:

- We chose public conversations over private ones for simplicity reasons, since public
conversations do not require invites or requests. We may add functionality for private
conversations later.

- We are displaying a list of all conversations to the user instead of requiring the user to
type the conversation name because it is easier for the user and goes along with the idea
of keeping things public.

- We decided users not involved in a conversation can not view a list of users in the
conversation for simplicity, and to limit the amount of data that must go over the
network. This functionality may also be added later.

- Users can, however, see the number of users in a given conversation, because that
information is useful to the user, especially without the above information.

- Users can be involved in more than one conversation because many people prefer to
talk in several groups at once while IMing, and we feel this feature is useful.

- We choose not to keep track of old messages because we feel there is no need to. The
server does not need access to them, and if a user does, it will remain in the GUI in the
client. Also, this keeps users new to a conversation from viewing the part of the
conversation that happened before they arrived. This is a privacy point, that since our
system is almost completely public, it is helpful that users do know what they say will
only be read by those already involved in the conversation.

- We will have users choose a username at login instead of having specific usernames and
requiring passwords. This is for simplicity, and may be added later.

Object Model:

Protocol

We will define our protocol for communication between our IM client and server as
follows. Below we list the types of messages that both the client and server will send
along with a short description of the situation in which the message is sent.
A message will follow the grammar:

message ::= header : (< field >)*

Here, header will be restricted to any of the capitalized types below, and field refers to
the information relevant to a message with that header. The number of fields is specific to
the message type as described below.

Client Messages

LOGIN: <username> -- at login, the client sends a message with the username request
NEWCONV: <convname> -- sent to server when the client requests to create a new

conversation with the given name
JOINCONV: <convname> -- sent to server when the client requests to join the

conversation of the given name
LEAVECONV: <convname> -- sent to server when the client leaves a conversation
MESSAGE: <convname> <message> -- sent to server when the client sends a message in

the given conversation

Server Messages

LOGINTAKEN: -- after a LOGIN message is received, if the requested login is already

taken, send notification message back to client
LOGINCONFIRM: <list of users> -- after a LOGIN message is received, if login is

unique, send notification back to client requesting login; includes a list of users
currently logged in so that the client may populate its user list

NEWUSER: <username> -- when a new client logs in, this is sent to all clients notifying
them of the new client with the given username

LOGOUT: <username> -- when a new client logs out, this is sent to all clients notifying
them of the event

CONVTAKEN: <convname> -- when a client requests to create a new conversation, this
message is sent in reply if the given conversation name is already taken

CONVCONFIRM: <convname> -- when a client requests to create a new conversation,
this message is sent in reply when the conversation is created

JOINCONVCONFIRM: <convname> <list of users> -- sent to a client when the server
has added the client to the given conversation; includes the list of users currently
in the conversation so that the client may populate its list of users in the
conversation

JOINCONVDENY: <convname> -- sent to a client to notify them that the client cannot
join the conversation; this may be used, for example, in the event that a user tries
to join a conversation, but in the process the conversation has been deleted

USERJOINEDCONV: <convname> <username> -- sent to all clients in the given
conversation to notify them that a client with the given username has joined

USERLEFTCONV: <convname> <username> -- sent to all clients in the given
conversation to notify them that a client with the given username has left

MESSAGE: <convname> <username> <message> -- sent to all users involved in the
given conversation; includes the username of the user who sent the message and
the actual message

CONVADDED: <convname> -- sent to all clients to notify them that a conversation
with the given name has been created

CONVDELETED: <convname> -- sent to all clients to notify them that the conversation
with the given name has been deleted

Usability Design

Log In Dialog – The user enters his screen name in the text field and clicks OK to log
into the instant messenger. There is a text field on top of the window that notifies the user
if the screen name is already taken or if it is an invalid screen name.

Main Window – On the left side of the window, the user sees a list of other online users’
screen names. On the right, there is a list of conversations that the user can join by double
clicking on the name. If the user wants to add a conversation, the user clicks on the Add
Conversation button and selects a name for the new conversation.

Conversations Window – The Conversations Window opens upon joining the first
conversation. Every subsequent conversation joined is added to this window as an
additional conversation tab. In each conversation tab, there is a text area that contains all
the messages sent by users and other important notifications, such as users joining or
leaving. Users type messages at the bottom of the text area and click send to add to the
conversation. To the right of the text area, there is a list of users who are currently in the
conversation. Leaving conversations can be done through the menu bar under File.

