N\
& MITGAITI

Accelerating
Information Technology
Innovation

http://aiti.mit.edu

Kenya Summer 2011
Lecture 4 — Data Structures

Organizing the Football Universe

* Leagues -> Teams -> Many Players

* Teams and players can be represented by
strings

* Build a data structure so that users can:
— Check whether a team belongs to a league

— Add and delete teams from leagues
(promotion and relegation)

— Track which players belong to which teams

Fundamentals

* Ordered, mutable collections: like a collection
of numbered buckets!

 Can mutate, sort, and access different
elements of lists

Lists: Initialization

* Initialize a list of player surnames:
barca=|[‘valdes’,

"alves’,’"xavi’,’"1iniesta’,
"messi’ |
» Access elements (individual player

surnames) by index:
>> print barcal0]

>> ‘valdes'’

Lists: Iteration
* How can we print out all elements of the
list, using a few lines of code?

— lteration over the items in the list
for player 1n barca:

print player

— lteration over indices
for 1ndex 1n range (len(barca)) :

print barcal[index]

* The simpler solution is usually better!

Lists: Operations

* Create new lists by ‘slicing’ existing lists:
— Glven: example 1ist = [0,1,1,2,3,5]

— first three example list[:2]

— last four = example list[Z:]

__example_list first_three

0

1 last_four
1

2

5

Lists: Operations

- Example: Relegating teams from and
promoting teams to the Premier League

* Promote the top two from FLChamp10 (list)
» Relegate the bottom two from Premier10 (list)

FLChamp10

Man. Utd. Queens Park
Chelsea Swansea City
Man. City Cardiff City
Arsenal Reading
Tottenham Nottingham
Liverpool SOMEE.
Blackpool Sheffield United
West Ham Scunthorpe o

Lists: Operations

» Concatenating lists, we can assign Premierll

* Premierll=Premierl0[:5]+
FLChamplO[:2]

FLChamp10[:2]

Man. Utd. Queens Park Man. Utd.
Chelsea Swansea City Chelsea
Man. City Man. City
Arsenal Arsenal
Tottenham Tottenham
Liverpool Liverpool
Queens Park
Norwich City 9

Lists: Operations

* Add:

— Ibarca .append (‘rossi’) adds rossi’ to the end of the
ISt

— barca.insert (" rossi’,0) adds rossi’ atindex O of
the list (the beginning)

Remove:

— barca.remove (‘messi’) removes the first instance of
messi’ from barca

Sort

— barca.sort () sorts all elements of the list in alphabetical
order

* Pop

— barca.pop (k) removes the kth element from the list and
returns it.

Tuples: Introduction

» Essentially an immutable list

— CANNOT change list items
— Form: tuple=('a’, 'b’, ’'c’, 'd’",..)

* We saw an example of this earlier:
—barca tuple=(‘valdes’,
"alves’,’xavi’,’1niesta’,
"messi’)

Tuples: Manipulation

* NOTICE:
—tuple[0] = "A’ returns an error

* There are some ways around this
— Make new tuple and add part of existing tuple
— tuple = ('A",) + tuplel[l:]
— New Tuple: ('a’, 'b’, ’'c’, 'd", 'e’)

Lists and Tuples: Limitations

* Suppose ~1000 players in each
professional football league

* How do we check that Messi Is In the
league? Are there any shortcuts?
— Sorted lists can help
— Costly to insert new elements into sorted lists

« A different solution: dictionaries, a

common Python implementation of hash
tables

Dictionaries

* An unordered collection of (key,value) pairs

* (key, value) pairs are mappings
— key: something you know

— value: something you want to know that is related
to the key

- Key and value can be objects of any type

Key Value (multiple possibilities)
‘LaLiga’ (string)
‘Argentina’ (string)

‘messi’ (string)
goals scored (int)

jersey number (int) y

Dictionaries: Initialization
* Initialization (maps players to teams):
player team = {‘messi’:’barca’,
‘donovan’ :"galaxy’),
"drogba'’ :’ chelsea’) }

messi barca
donovan galaxy
drogba chelsea

Dictionaries: Modification

* Modification

— Change Messi's team:
player team[‘messi’]=‘real madrid’

messi real_madrid
donovan galaxy
drogba chelsea

Dictionaries: Modification

* Modification:

— Add a new player:
player team|[‘beckham’]=‘'who knows’

messi real_madrid
donovan galaxy
drogba chelsea

beckham who_knows

Dictionaries

« Suppose someone gives you a list of players, player list

* How can we use our dictionary, player team, to print out
the teams of each player on the player 1ist?

* We may not know that player team has an entry for an
iteminplayer list B
* def check list(player 1list):
for player in player list:
if player in player team:
print player team[player]
else:
print 'unknown team’

« Later on: exception handling

Useful Questions

* WIll one set of data be mapped to another?

— Words to definitions, soccer players to jersey
sizes, students to grades

— Dictionary!

Useful Questions

* |s the data I'm storing going to change?
— Mutability VS Immutability
— If NOT > Tuples!

» |f data will change? Can it fit into a single
list?
—If YES - Use a List!
— Recall it has: add, remove and sort methods

Useful Questions

* Why use tuples over lists?

— Tuples — heterogeneous

e constitution_articles=(4,Xl,c,15) # chapter, article,
#section, line

— Lists — homogeneous

* You can store different data types, but not
recommended

