N\
& MITGAITI

Accelerating
Information Technology
Innovation

http://aiti.mit.edu

KenyaSummer 2011
Lecture 10 — Becoming a Python Ninja

Python Pow

In encryption, we like to do (a”b)%c
A, b, and c can be very large numbers.

Ex: (1234567890%*9876543219)%33
— This is very slow. (wasn’t done in 3 hours)
— 650MB of ram, processor maxed out.

Better way: pow
(1234567890,9876543219,33)

— At least 1800x faster. (6.14 seconds)
— The answer is 24.

Reading a text file

* Easy in python:

For line 1n open(*“asdf.txt”):

print line

Timing your code

from timeit import Timer
t = timeit.Timer (“8**2")

print t.timeit ()

* If you want to time something longer, use
the timer to call a method.

Efficient swapping of variables

* The normal way:

c=a
a=b

b=c

* The Python way:
a,b = b,a

— More efficient — a temporary variable is never
created.

Inline Conditionals

* You can do inline if/else statements to
make simple coding shorter (similar to the
“a ? b :c” concept in other languages)

* EX:

Print “Equal” i1f A==B else “Not Equal”

Sets

» Sets don’t have duplicate values.

* If you only want unique values in a list, you
can create a set from it:

Print set([1,1,2,2,2,3,3,3,3,4])
» Qutput: set([1,2,3])

Chained comparison operators

« Comparison operators can be chained:
X =5
Return 1<x<10

Output: True

Step argument for slice operators

X = [1,2,3,4,5,6]

Print x[:
Print x[:
Print xJ[:
Print xJ[:

Print xJ[:

:2]1 -2 [1,3,9]

:3]1 =2 [1,4]

:-1] -2 1[6,5,4,3,2,1]
:-2] 2 [6,4,2]
:=2][::-1]1 =2 [2,4,0]

If any, if all

numbers = [1,2,3,4,5,6,7]
If any(num > 6 for num 1in
numbers)>6

— True if any number is greater than 6

If all(num >6 for num 1in
numbers)

— True only if all numbers are greater than 6

List comprehension

 Traditional for loop:
X =[]
Y =01,2,3,4,5,6]
for n in y:
X.append(n**2)
 List Comprehension

X = [n**2 for n 1in y]

List comprehensions

* They get even better:

[n**2 for n 1in X 1f n>3]
(only if n > 3)

[(n,n**2) for n 1in x]
(tuple with n and n”2)

List Comprehensions

* The Normal way:
mult list = []
for a in [1,2,3,4]:
for b in [5,6,7,8]:
mult list.append(a*b)
* The Python way:

mult list= [a*b for a in [1,2,3,4]
for b in [5,6,7,8]]

Generators

» Generators have the same syntax as list
comprehensions, but use parenthesis
iInstead of square brackets

* These are faster than list comprehensions
and use much less memory, but can't
store your data.

« Computes one value at a time.

Generators

 List comprehension

— sum([a”b for a in range(1000) for b in range
(1000)])

— The complete list comprehension is created first,
stored in memory, and summed after completion.

— 25 seconds, >600MB ram

 Generator

— sum(a”b for a in range(1000) for b in range
(1000))

— Values are added to the sum one at a time
— 23 seconds, <0.5MB ram

Lambda functions

A function that is created at runtime.

Always returns something (but doesn't
iInclude a return statement)

Convenient for passing as an argument
EX:

f = lambda xX:x**2
Takes x as input and returns x2

Filter Function

« Syntax: filter(function, list)

* EX:

numbers = [1,2,3,4,5,6,7]

print filter(lambda x: x<4, numbers)

Output:
[1,2,3]

Questions?

