
Accelerating
Information Technology

Innovation

http://aiti.mit.edu

KenyaSummer 2011
Lecture 10 – Becoming a Python Ninja

2	

Python Pow
•  In encryption, we like to do (a^b)%c
•  A, b, and c can be very large numbers.
•  Ex: (1234567890**9876543219)%33!

– This is very slow. (wasn’t done in 3 hours)
– 650MB of ram, processor maxed out.

•  Better way: pow
(1234567890,9876543219,33)!
– At least 1800x faster. (6.14 seconds)
– The answer is 24.

Reading a text file

•  Easy in python:

For line in open(“asdf.txt”):!
 print line!

4

Timing your code

from timeit import Timer!
t = timeit.Timer(“8**2”)!
print t.timeit()!

•  If you want to time something longer, use
the timer to call a method.

5

Efficient swapping of variables

•  The normal way:
c=a!
a=b!
b=c!
•  The Python way:
a,b = b,a!

– More efficient – a temporary variable is never
created.

6

Inline Conditionals

•  You can do inline if/else statements to
make simple coding shorter (similar to the
“a ? b : c” concept in other languages)

•  Ex:
Print “Equal” if A==B else “Not Equal”!

7

Sets

•  Sets don’t have duplicate values.
•  If you only want unique values in a list, you

can create a set from it:
Print set([1,1,2,2,2,3,3,3,3,4])!
•  Output: set([1,2,3])

8

Chained comparison operators

•  Comparison operators can be chained:
X = 5!
Return 1<x<10!
Output: True!

9

Step argument for slice operators

X = [1,2,3,4,5,6]!
Print x[::2] [1,3,5]
Print x[::3] [1,4]
Print x[::-1] [6,5,4,3,2,1]
Print x[::-2] [6,4,2]
Print x[::-2][::-1] [2,4,6]

10

If any, if all

•  numbers = [1,2,3,4,5,6,7]!
•  If any(num > 6 for num in
numbers)>6!
– True if any number is greater than 6

•  If all(num >6 for num in
numbers)!
– True only if all numbers are greater than 6

11

List comprehension

•  Traditional for loop:
X = []!
Y = [1,2,3,4,5,6]!
for n in y:!
 x.append(n**2)!

•  List Comprehension
! ! !X = [n**2 for n in y]!

12

List comprehensions

•  They get even better:

[n**2 for n in x if n>3]
 (only if n > 3)

[(n,n**2) for n in x] !
 (tuple with n and n^2)

13

List Comprehensions

•  The Normal way:
mult_list = []!
for a in [1,2,3,4]:!
 for b in [5,6,7,8]:!
! ! mult_list.append(a*b)!

•  The Python way:
mult_list= [a*b for a in [1,2,3,4]
for b in [5,6,7,8]]!

14

Generators

•  Generators have the same syntax as list
comprehensions, but use parenthesis
instead of square brackets

•  These are faster than list comprehensions
and use much less memory, but can’t
store your data.

•  Computes one value at a time.

15

Generators
•  List comprehension

–  sum([a^b for a in range(1000) for b in range
(1000)])

– The complete list comprehension is created first,
stored in memory, and summed after completion.

–  25 seconds, >600MB ram
•  Generator

–  sum(a^b for a in range(1000) for b in range
(1000))

– Values are added to the sum one at a time
–  23 seconds, <0.5MB ram

16

Lambda functions

•  A function that is created at runtime.
•  Always returns something (but doesn’t

include a return statement)
•  Convenient for passing as an argument
•  Ex:

f = lambda x:x**2!
•  Takes x as input and returns x2

17

Filter Function

•  Syntax: filter(function, list)
•  Ex:
numbers = [1,2,3,4,5,6,7]!
print filter(lambda x: x<4, numbers)!

Output:!
[1,2,3]!

18

Questions?

19

