
Accelerating
Information Technology

Innovation

http://aiti.mit.edu

Kenya Summer 2011
Lecture 1 – Introduction to Python

Agenda

•  About the Course
•  What is Python?
•  Why Python, in general?
•  Why Python, for us?
•  The Development Cycle
•  Basic Syntax

2

About the Course

3

Course Outline

•  Week 1 - Basic Python
•  Introduction to Python
•  Variable and Operators
•  Control Structures

•  Week 2 - Intermediate Python
•  Data Structures
•  Functions
•  Objects
•  Inheritance
•  Exceptions

4

Course Outline
•  Week 3 - Advanced Python

•  Regular Expressions
•  Becoming a Python Ninja
•  Useful Libraries and Functions
•  Django

•  Week 4
•  Google App Engine
•  Client Interfaces (Mobile Web)
•  Start Final Project

•  Weeks 5 & 6
•  Work on Final Project

5

Course Expectations

•  Attend class every day
•  Arrive to class on time
•  Collaborate
•  Teach others as much as you can
•  Do everything you can in the labs
•  Ask questions!

6

Course Website and Mailing List

•  Lectures and labs will be posted at:
– http://aiti.mit.edu/app/materials/kenya-

summer-2011/

•  Official mailing list for the course is:
– aiti-kenya-2011-summer-class@mit.edu

7

What is Python?

8

Python is…

•  …interpreted. Languages like C/C++
require compilers to translate high-level
code to machine code…

9

Compiler

High-Level Code

Machine Code

a = b + c;

…
ld $r1, a
ld $r2, b
add $r3, $r1, $r2
st a, $r3
…

Python is…

•  …which means that a program has to be
compiled separately for each type of
machine:

10

program

compiler
compiler

compiler

Win
Mac

Unix

machine code machine code
machine code

Python is…

•  Python code is compiled to an
intermediate format called bytecode,
which is understood by a virtual machine.

•  ‘Write Once, Run Anywhere’

11

Python Source (.py)

compiler

Python Bytecode (.pyc)

Python is…

•  This is accomplished through the use of
Python virtual machines, or interpreters,
which are built on each type of machine.

•  The interpreter simulates the VM bytecode
on the actual hardware, translating the
VM’s ‘native’ calls to machine code.

•  This presents a standard interface to the
language, allowing portability

12

Python is…

13

Python Program

compiler

Python bytecode

Win

Mac

Unix

Interpreter

Interpreter

Interpreter

Python is…

•  Interestingly, implementations exist for
other VMs on the same hardware:
– Jython – compiles to Java VM bytecode
–  Iron Python – compiles to .NET bytecode

14

Python is…

•  Dynamically typed; variable types are
determined at runtime depending on what
you assign to them:

15

int
a = 1
string
a = “a”
list
a = [1,2,3]
dictionary
a = {1:2,3:4}

Why Python?

16

Python because…

•  Portable and architecture-agnostic
•  Convenient built-in functions and data

structures
•  Syntax is readable and fast to write

17

if (x)
{

 if (y)
 {
 a();
 }
 b();

}

if x:
 if y:
 a()
 b()

Python because…

•  Great for rapid prototyping
– No separate compile step
– No need to explicitly specify method argument

types beforehand (due to dynamic typing)

18

Why Python, For Us?

19

Python for us, because…

•  We want each of you to reach millions of
users, and don’t want to waste time
building the pipes and plumbing

•  Python is supported by a number of good
frameworks, led by
– Google AppEngine
– Django

20

The Development Cycle

21

The (Ideal) Development Cycle

•  Clearly specify the problem:
–  Inputs, input manipulation, outputs

•  Design the solution:
– E.g what algorithms, data structures

•  Implementation:
– Coding!

•  Test, test, test
– Strongly suggest unit testing with PyUnit

22

The (Real) Development Cycle

•  As above, but faster.
– Python, as a dynamically typed, dynamic

language is perfect for rapid prototyping
•  Be prepared to throw away one (or more!)

prototypes
– Often you learn crucial things about the

problem as you code which cannot be fixed
without starting from scratch.

23

Strong Recommendations

•  Use self-documenting variable names
– e.g. “name” instead of “n”

•  Use full length variable names
– e.g. “custom_presenter” not “custpres”

•  Comment everything that’s not absolutely
obvious
– Can your team member extend some part of

your code?
– Can you read your own code in 10 years?

24

Basic Syntax

25

Syntax

•  Blocks are delimited with whitespace:
specifically, four spaces (and no tabs)

26

if x:
 if y:
 a()
 b()

count = 0
for i in range(0:5)
 count += i

Syntax

•  Semicolons are only used to separate
multiple statements on the same line,
which is discouraged:

27

if (x)
{

 a();
 b();

}

if x:
 a(); b()

Syntax

•  Single line comments are denoted with
hash (#), multiline with three quotes ”””

28

This is a comment
foo()

”””
This is a
longer comment
”””
foo()

Interaction
•  Python has an interactive console which is

great for tinkering

•  …etc

29

$ python
Python 2.7.1+ (r271:86832, Apr 11 2011, 18:13:53)
[GCC 4.5.2] on linux2
Type “help”, “copyright”, “credits” or “license” for
more information
>>> a = 1
>>> a
1
>>> type(a)
<type ‘int’>
>>>

Questions?

30

