
	

MIT AITI
Python Software Development

Lab 03: Control Structures

This lab introduces the concepts and syntax of if/elif/else statements, as well as for and
while loops.

Part	
 I:	
 Written	
 Exercises	
 	

	

1. Consider the following code (draw a flowchart diagram if it helps):

if x>2:
 if y>2:
 z=x+y
 print "z is ",z
else:
 print "x is ",x

What	
 is	
 the	
 output	
 if:	

a. x	
 =	
 2	
 and	
 y	
 =	
 5?	
 	

b. x	
 =	
 3	
 and	
 y	
 =	
 1?	

c. x	
 =	
 1	
 and	
 y	
 =	
 1?	

d. x	
 =	
 4	
 and	
 y	
 =	
 3?	

	

2. Suppose we have the following code:

	

z = x+3
if z==1:
 y=0
elif z==2:
 y=10
elif z==4:
 y+=1
else:
 y=1

a. What is y equal to at after the switch statement if x = 3 and y = 5 entering the switch?
b. What if x = 2 and y = 5 at the beginning?
	

	

	

	

	

	

	

	

3. What does the following code output, and how many times do we run through the loop
body?

	

i=0
while i < 10:
 i+=1
 if i%2 == 0:
 print i

4. How about this version of the code?
	

i=0
while i > 10:
 i+=1
 if i%2 == 0:
 print i

Part	
 II:	
 Programming	
 Control	
 Structures	

	

Create	
 a	
 new	
 python	
 file	
 called	
 UsingControlStructures.py.	
 We	
 will	
 be	
 checking	
 this	
 python	
 file,	
 so	
 be	

sure	
 that	
 everything	
 works.	
 	
 There	
 will	
 be	
 instructions	
 below	
 to	
 mark	
 the	
 different	
 questions	
 on	
 this	
 part	

of	
 the	
 lab.	

	

Copy	
 the	
 following	
 code	
 into	
 your	
 file:	

theInput = raw_input("Enter an integer: ")
#Your code here
	

This	
 code	
 waits	
 for	
 the	
 user	
 to	
 type	
 an	
 integer	
 and	
 press	
 the	
 “Enter”	
 key,	
 then	
 returns	
 what	
 they	

entered	
 as	
 an	
 integer.	
 In	
 the	
 code	
 we	
 store	
 the	
 value	
 in	
 a	
 variable	
 called	
 theInput.	

	

5. Now	
 insert	
 code	
 into	
 the	
 code	
 above	
 so	
 that	
 the	
 program	
 prints	
 “even”	
 if	
 the	
 input	
 integer	
 is	
 even	

and	
 “odd”	
 if	
 it	
 is	
 odd.	
 	
 	

	

For	
 problem	
 6-­‐9,	
 use	
 the	
 same	
 Python	
 file	
 as	
 the	
 previous	
 problems.	
 	
 Separate	
 the	
 output	
 for	
 each	

of	
 the	
 following	
 problem	
 problems	
 by	
 printing	
 	

“-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐”	
 to	
 the	
 screen.	

	

6. Declare	
 and	
 initialize	
 variables	
 representing:	
 	

a. The	
 age	
 people	
 start	
 primary	
 school,	
 example:	
 primarySchoolAge = 4;	

b. The	
 legal	
 voting	
 age.	

c. The	
 age	
 you	
 can	
 become	
 president.	

d. The	
 official	
 retirement	
 age.	

e. A	
 person’s	
 age.	
 	
 Do	
 this	
 by	
 using:	

	

personsAge = input(“Enger an age: “)
	

Again,	
 this	
 just	
 waits	
 for	
 the	
 user	
 to	
 enter	
 a	
 number	
 and	
 then	
 stores	
 it	
 in	
 some	
 variable.	
 	

	

In	
 the	
 current	
 file,	
 use	
 if-elif	
 statements	
 to	
 print:	

f. “Too	
 young.”	
 if	
 the	
 person	
 is	
 too	
 young	
 for	
 school.	

g. “Remember	
 to	
 vote”	
 if	
 the	
 person	
 is	
 old	
 enough	
 to	
 vote.	

h. “Vote	
 for	
 me”	
 if	
 the	
 person	
 is	
 old	
 enough	
 to	
 be	
 president	
 and	
 “You	
 can’t	
 be	
 president”	
 if	

they	
 are	
 not.	

i. “Too	
 old.”	
 if	
 the	
 person	
 is	
 old	
 enough	
 to	
 retire.	

	

7. Write	
 a	
 for	
 or	
 while	
 loop	
 that	
 prints	
 out	
 all	
 the	
 multiples	
 of	
 3	
 down	
 from	
 40	
 to	
 0	
 in	
 decreasing	

order.	
 That	
 is,	
 39,	
 36,	
 33,	
 …,	
 3,	
 0.	

	

8. Write	
 a	
 loop	
 that	
 prints	
 out	
 all	
 numbers	
 between	
 6	
 and	
 30	
 that	
 are	
 not	
 divisible	
 by	
 2,	
 3,	
 or	
 5.	
 	

	

9. Using	
 a	
 while	
 loop,	
 find	
 the	
 smallest	
 positive	
 integer	
 n	
 such	
 that	
 79*n	
 has	
 a	
 remainder	
 of	
 1	
 when	

divided	
 by	
 97.	

	

	

Part	
 III:	
 Rock	
 Paper	
 Scissors	

	

In this exercise, we are going to practice using the if statement. We are going to write a small

program that will as the user for the choice player 1 and 2 made and will print out the result of

the game. Here are the rules:

1. First create a truth table for all the possible choices for player 1 and 2 and the outcome of the

game, e.g.

Player 1 Player 2 Outcome

Rock Rock Tie

Rock Scissors Player 1

This should help you with the next part.

2. Create a file rsp.py that will generate the outcome of the rock, scissors, paper game. The

program should work as follows:

Player 1? rock
Player 2? scissors
Player 1 wins.

The only valid inputs are rock, paper, and scissors. If the user enters anything else, your

program should output "This is not a valid object selection". Use the truth table you created to

help with creating the conditions for your if statement.

Note If you have a long condition in your if statement and you want to split it into multiple

lines, you would want to enclose the entire expression in parenthesis, e.g.

if (player1 == 'rock' and
 player2 == 'scissors'):
 print 'Player 1 wins.'

	

Part	
 IV:	
 Buggy	
 Loop	

Consider the following program:

n = 10
i = 10

while i > 0:
 print i
 if i % 2 == 0:
 i = i / 2
 else:
 i = i + 1

1. Draw a table that shows the value of the variables n and i during the execution of the

program. Your table should contain two columns (one for each variable) and one row for each

iteration. For each row in the table, write down the values of the variables as they would be at

the line containing the print statement.

2. What is problematic about this program? Suggest one way to improve its behavior.

Part	
 V:	
 	
 Practice	
 with	
 While	
 Loops	

	

Write a program that will ask the user to enter a number that is divisible by 2. If the user enters a

number that is not divisible by 2, the program will print out a message and then will ask the user

to enter a number again. Otherwise, it will congratulate the number and stop. Save your

program in a file called loops.py. Here is an example of what the program should do:

Enter a number divisible by 2: 11
The number 11 is not divisible by 2.
Enter a number divisible by 2: 6
Congratulations! 6 is divisible by 2.
	

	

	

	

	

	

Part	
 VI:	
 Secret	
 Messages	

	

The goal of this exercise is to write a cyclic cipher to encrypt messages. This type of cipher was

used by Julius Ceasar to communicate with his generals. It is very simple to generate but it can

actually be easily broken and does not provide the security one would hope for.

The key idea behind the Ceasar cipher is to replace each letter by a letter some fixed number of

positions down the alphabet. For example, if we want to create a cipher shifting by 3, you will

get the following mapping:

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

To be able to generate the cipher above, we need to understand a little bit about how text is

represented inside the computer. Each character has a numerical value and one of the standard

encodings is ASCII (American Standard Code for Information Interchange). It is a mapping

between the numerical value and the character graphic. For example, the ascii value of 'A' is 65

and the ascii value of 'a' is 97. To conver between the ascii code and the character value in

Python, you can use the following code:

letter = 'a'
converts a letter to ascii code
ascii_code = ord(letter)

convers ascii code to a letter
letter_res = chr(ascii_code)

print ascii_code, letter_res

Start small. Do not try to implement the entire program at once. Break the program into parts as

follows:

1. Create a file called cipher.py. Start your program by asking the user for a phrase to encode

and the shift value. Then create a new string that contains the original phrase value using a for

loop as follows:

encoded_phrase = ''

for c in phrase:

 encoded_phrase = encoded_phrase + c

2. Now modify the program above to replace all the alphabetic characters with 'x'. For example:
Enter sentence to encrypt: Mayday! Mayday!
Enter shift value: 4
The encoded phrase is: Xxxxxx! Xxxxxx!

We are going to apply the cipher only to the alphabetic characters and we will ignore the others.

3. Now modify your code, so that it produces the encoded string using the cyclic cipher with the

shift value entered by the user. Let's see how one might do a cyclic shift. Let's say we have the

sequence: 012345

If we use a shift value of 4 and just shift all the numbers, the result will be: 456789

We want the values of the numbers to remain between 0 and 5. To do this we will use the

modulus operator. The expression x%y will return a number in the range 0 to y-1 inclusive, e.g.

4%6 = 4, 6%6 = 0, 7%6 =1. Thus the result of the operation will be:

450123

Hint: Note that the ascii value of 'A' is 65 and 'a' is 97, not 0. So you will have to think how to
use the modulus operator to achieve the desired result. Apply the cipher separately to the
upper and lower case letters.

Here is what you program should output:

Enter sentence to encrypt: Mayday! Mayday!
Enter shift value: 4
The encoded phrase is: Qechec! Qechec!

	

Part	
 VII:	
 Number	
 Triangle	
 (Optional)	

	

Write nested loops that will print the following pattern:

 1
 1 2 1
 1 2 4 2 1
 1 2 4 8 4 2 1
 1 2 4 8 16 8 4 2 1
 1 2 4 8 16 32 16 8 4 2 1
 1 2 4 8 16 32 64 32 16 8 4 2 1
 1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

Reproduce the pattern exactly; note the spacing and how the digits align between different lines.

