
	
MIT AITI
Python Software Development

Lab 03: Control Structures

This lab introduces the concepts and syntax of if/elif/else statements, as well as for and
while loops.

Part	 I:	 Written	 Exercises	 	
	
1. Consider the following code (draw a flowchart diagram if it helps):

if x>2:
 if y>2:
 z=x+y
 print "z is ",z
else:
 print "x is ",x

What	 is	 the	 output	 if:	
a. x	 =	 2	 and	 y	 =	 5?	 	
b. x	 =	 3	 and	 y	 =	 1?	
c. x	 =	 1	 and	 y	 =	 1?	
d. x	 =	 4	 and	 y	 =	 3?	

	
2. Suppose we have the following code:

	
z = x+3
if z==1:
 y=0
elif z==2:
 y=10
elif z==4:
 y+=1
else:
 y=1

a. What is y equal to at after the switch statement if x = 3 and y = 5 entering the switch?
b. What if x = 2 and y = 5 at the beginning?
	
	
	
	
	
	
	
	

3. What does the following code output, and how many times do we run through the loop
body?

	
i=0
while i < 10:
 i+=1
 if i%2 == 0:
 print i

4. How about this version of the code?
	

i=0
while i > 10:
 i+=1
 if i%2 == 0:
 print i

Part	 II:	 Programming	 Control	 Structures	
	
Create	 a	 new	 python	 file	 called	 UsingControlStructures.py.	 We	 will	 be	 checking	 this	 python	 file,	 so	 be	
sure	 that	 everything	 works.	 	 There	 will	 be	 instructions	 below	 to	 mark	 the	 different	 questions	 on	 this	 part	
of	 the	 lab.	
	
Copy	 the	 following	 code	 into	 your	 file:	

theInput = raw_input("Enter an integer: ")
#Your code here
	

This	 code	 waits	 for	 the	 user	 to	 type	 an	 integer	 and	 press	 the	 “Enter”	 key,	 then	 returns	 what	 they	
entered	 as	 an	 integer.	 In	 the	 code	 we	 store	 the	 value	 in	 a	 variable	 called	 theInput.	
	
5. Now	 insert	 code	 into	 the	 code	 above	 so	 that	 the	 program	 prints	 “even”	 if	 the	 input	 integer	 is	 even	

and	 “odd”	 if	 it	 is	 odd.	 	 	
	

For	 problem	 6-‐9,	 use	 the	 same	 Python	 file	 as	 the	 previous	 problems.	 	 Separate	 the	 output	 for	 each	
of	 the	 following	 problem	 problems	 by	 printing	 	
“-‐-‐-‐-‐-‐-‐-‐-‐-‐”	 to	 the	 screen.	

	
6. Declare	 and	 initialize	 variables	 representing:	 	

a. The	 age	 people	 start	 primary	 school,	 example:	 primarySchoolAge = 4;	
b. The	 legal	 voting	 age.	
c. The	 age	 you	 can	 become	 president.	
d. The	 official	 retirement	 age.	
e. A	 person’s	 age.	 	 Do	 this	 by	 using:	
	

personsAge = input(“Enger an age: “)
	

Again,	 this	 just	 waits	 for	 the	 user	 to	 enter	 a	 number	 and	 then	 stores	 it	 in	 some	 variable.	 	

	
In	 the	 current	 file,	 use	 if-elif	 statements	 to	 print:	
f. “Too	 young.”	 if	 the	 person	 is	 too	 young	 for	 school.	
g. “Remember	 to	 vote”	 if	 the	 person	 is	 old	 enough	 to	 vote.	
h. “Vote	 for	 me”	 if	 the	 person	 is	 old	 enough	 to	 be	 president	 and	 “You	 can’t	 be	 president”	 if	

they	 are	 not.	
i. “Too	 old.”	 if	 the	 person	 is	 old	 enough	 to	 retire.	

	
7. Write	 a	 for	 or	 while	 loop	 that	 prints	 out	 all	 the	 multiples	 of	 3	 down	 from	 40	 to	 0	 in	 decreasing	

order.	 That	 is,	 39,	 36,	 33,	 …,	 3,	 0.	
	

8. Write	 a	 loop	 that	 prints	 out	 all	 numbers	 between	 6	 and	 30	 that	 are	 not	 divisible	 by	 2,	 3,	 or	 5.	 	
	

9. Using	 a	 while	 loop,	 find	 the	 smallest	 positive	 integer	 n	 such	 that	 79*n	 has	 a	 remainder	 of	 1	 when	
divided	 by	 97.	

	
	
Part	 III:	 Rock	 Paper	 Scissors	
	

In this exercise, we are going to practice using the if statement. We are going to write a small

program that will as the user for the choice player 1 and 2 made and will print out the result of

the game. Here are the rules:

1. First create a truth table for all the possible choices for player 1 and 2 and the outcome of the

game, e.g.

Player 1 Player 2 Outcome

Rock Rock Tie

Rock Scissors Player 1

This should help you with the next part.

2. Create a file rsp.py that will generate the outcome of the rock, scissors, paper game. The

program should work as follows:

Player 1? rock
Player 2? scissors
Player 1 wins.

The only valid inputs are rock, paper, and scissors. If the user enters anything else, your

program should output "This is not a valid object selection". Use the truth table you created to

help with creating the conditions for your if statement.

Note If you have a long condition in your if statement and you want to split it into multiple

lines, you would want to enclose the entire expression in parenthesis, e.g.

if (player1 == 'rock' and
 player2 == 'scissors'):
 print 'Player 1 wins.'

	
Part	 IV:	 Buggy	 Loop	

Consider the following program:

n = 10
i = 10

while i > 0:
 print i
 if i % 2 == 0:
 i = i / 2
 else:
 i = i + 1

1. Draw a table that shows the value of the variables n and i during the execution of the

program. Your table should contain two columns (one for each variable) and one row for each

iteration. For each row in the table, write down the values of the variables as they would be at

the line containing the print statement.

2. What is problematic about this program? Suggest one way to improve its behavior.

Part	 V:	 	 Practice	 with	 While	 Loops	
	
Write a program that will ask the user to enter a number that is divisible by 2. If the user enters a

number that is not divisible by 2, the program will print out a message and then will ask the user

to enter a number again. Otherwise, it will congratulate the number and stop. Save your

program in a file called loops.py. Here is an example of what the program should do:

Enter a number divisible by 2: 11
The number 11 is not divisible by 2.
Enter a number divisible by 2: 6
Congratulations! 6 is divisible by 2.
	

	
	
	
	
	

Part	 VI:	 Secret	 Messages	
	

The goal of this exercise is to write a cyclic cipher to encrypt messages. This type of cipher was

used by Julius Ceasar to communicate with his generals. It is very simple to generate but it can

actually be easily broken and does not provide the security one would hope for.

The key idea behind the Ceasar cipher is to replace each letter by a letter some fixed number of

positions down the alphabet. For example, if we want to create a cipher shifting by 3, you will

get the following mapping:

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

To be able to generate the cipher above, we need to understand a little bit about how text is

represented inside the computer. Each character has a numerical value and one of the standard

encodings is ASCII (American Standard Code for Information Interchange). It is a mapping

between the numerical value and the character graphic. For example, the ascii value of 'A' is 65

and the ascii value of 'a' is 97. To conver between the ascii code and the character value in

Python, you can use the following code:

letter = 'a'
converts a letter to ascii code
ascii_code = ord(letter)

convers ascii code to a letter
letter_res = chr(ascii_code)

print ascii_code, letter_res

Start small. Do not try to implement the entire program at once. Break the program into parts as

follows:

1. Create a file called cipher.py. Start your program by asking the user for a phrase to encode

and the shift value. Then create a new string that contains the original phrase value using a for

loop as follows:

encoded_phrase = ''

for c in phrase:

 encoded_phrase = encoded_phrase + c

2. Now modify the program above to replace all the alphabetic characters with 'x'. For example:
Enter sentence to encrypt: Mayday! Mayday!
Enter shift value: 4
The encoded phrase is: Xxxxxx! Xxxxxx!

We are going to apply the cipher only to the alphabetic characters and we will ignore the others.

3. Now modify your code, so that it produces the encoded string using the cyclic cipher with the

shift value entered by the user. Let's see how one might do a cyclic shift. Let's say we have the

sequence: 012345

If we use a shift value of 4 and just shift all the numbers, the result will be: 456789

We want the values of the numbers to remain between 0 and 5. To do this we will use the

modulus operator. The expression x%y will return a number in the range 0 to y-1 inclusive, e.g.

4%6 = 4, 6%6 = 0, 7%6 =1. Thus the result of the operation will be:

450123

Hint: Note that the ascii value of 'A' is 65 and 'a' is 97, not 0. So you will have to think how to
use the modulus operator to achieve the desired result. Apply the cipher separately to the
upper and lower case letters.

Here is what you program should output:

Enter sentence to encrypt: Mayday! Mayday!
Enter shift value: 4
The encoded phrase is: Qechec! Qechec!

	
Part	 VII:	 Number	 Triangle	 (Optional)	
	
Write nested loops that will print the following pattern:

 1
 1 2 1
 1 2 4 2 1
 1 2 4 8 4 2 1
 1 2 4 8 16 8 4 2 1
 1 2 4 8 16 32 16 8 4 2 1
 1 2 4 8 16 32 64 32 16 8 4 2 1
 1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

Reproduce the pattern exactly; note the spacing and how the digits align between different lines.

