
MIT

Global Startup Labs

http://aiti.mit.edu

Indonesia Summer 2013

Meetup 07 – Introduction to Python

Today‘s Meetup

• Why Python?

• Basic Syntax

• Variables

• Control Statements

• Functions

2

3

Why Python?

Python because…

• Convenient built-in functions and data structures

• Great for rapid prototyping

– No seperate compile step

– No need to explicitely specify method argument
types beforehand

• Syntax is readable and fast to write

4

Python because…

• We want each of you to reach millions of
users, and don’t want to waste time building
the pipes and plumbing

• Python is supported by a number of good
frameworks, including

– Django

– Heroku

– Google AppEngine

5

Python Shell and IDLE

• Download Python 2.7.5:
http://www.python.org/getit/

6

http://www.python.org/getit/

7

Basic Syntax

Basic Syntax

• Semicolons are only used to seperate multiple
statements on the same line (which is
discouraged)

• Whitespace is important!

• Use hash # to write comments

>>> # this is a comment

8

9

Variables

Variables

Python is a “dynamically typed” language

– A variable’s data type is not declared.

– “Statically typed” languages like Java must declare
a variable’s data type: String x = “Hello World”

10

 Python automatically detects which type
your variable is

 Use type() function to get variable‘s type

Numbers

11

• Can assign multiple values: x = y = 0

• Can use basic operators +, -, *, /, %, **

• Complex numbers are supported

– a = 1 + 5j

– Complex(1,5)

– Use a.real, a.imag, abs(a) to get the real part,
imaginary part or the absolute value of the
complex number

Number example

>>>x = y = 3

>>>z = 14

>>>z/x

>>>z%y**2

12

Strings

• Use single or double quotes to declare strings

• Use \n\ to start a new line, \ to continue in
same line

• Use triple quotes for multiple line strings

13

String operators

• We can add or multiply strings

• We can find the lenght of a string by using
len()

• Use _ to refer to the last value used

14

Strings as a sequence

• We can access single letters of a string by
using []

• BUT: We cannot change single characters of a
string

15

Strings example

>>> x = Hello

>>> x[:2] + x[2:]

>>> x + x[-1]*2

>>> x[1] = ‚a‘

>>>print(x)

16

Lists

• A list is a sequence of values

• The elements do not have to be of the same
type: can be ints, floats, stringsor even other
lists mixed together

• We can access and change single elements
using []

17

Operating on lists

• Access single elements and change them

• We can slice lists, add items to lists or delete
items from list

18

Using methods with lists

19

• list.append(x)
– Add an item to the end of the list; equivalent to a[len(a):] = [x].

• list.insert(i, x)
– Insert an item x at a given position I

• list.remove(x)
– Remove the first item from the list whose value is x

• list.pop([i])
– Remove the item at the given position in the list, and return it.

• list.count(x)
– Return the number of times x appears in the list.

• list.sort()
– Sort the items of the list, in place.

• list.reverse()
– Reverse the elements of the list, in place.

• And more

List comprehension

• A fast way to create lists that follow a
specified pattern

• Use for loops and if statements to control list
content

20

What does
this code
generate?

List comprehension

We can also use more than one sequence to
generate a list:

What does the following statement generate?

>>> [x + y for x in [1, 2] for y in [2, 5] if x != y]

21

User input

• We can ask the user for an input and store the
value in a variable:

• Use raw_input to get string values

>>> name = raw_input(‚What is your name?‘)

• Use input to get number values

>>> age = input(‚How old are you?‘)

22

23

Control Statements

Control statements

• Conditionals: control which set of statements
is executed.

– if / else

• Iteration: control how many times a set of
statements is executed.

– while loops

– for loops

24

If statements

Consist of a condition and a body:

– If the condition is true then the body gets
executed

• Conditions can use <, >, ==, !=, &&, …

• The body can be any python operation

• Indentation is key!

25

If example

>>> x=12

>>> if x=0:

print(„x is zero“)

elif x>0:

print(„x is greater than zero“)

else:

print(„x is less than zero“)

print(„Indentation is key“)

26

While loops

• As long as the condition is true, the body gets
executed repeatedly

– Loop ends as soon as condition turns false

We can use break and continue statements to break
the cycle:

• Break: breaks out of loop completely

• Continue: skips the rest of the body for one cycle, but
continues loop

27

While loop example

>>> i = 0

>>> while i < 5:

i = i + 1

if i == 3

continue

print i

28

For loops

• Execute a body over a sequence of values

• We can use break and continue statements in
for loops as well

• Sequences can be lists, strings, or generated
by the range() function

29

The range() function

• Use range() to create sequences:

– range(4) -> [0, 1, 2, 3]

– range(5, 10) -> [5, 6, 7, 8, 9]

– range (1, 30, 5) -> [1, 6, 11, 16, 21, 26]

30

For loop example

31

32

Functions

Functions

• A function is a sequence of python statements
that operates on predefined input parameters
and can be called by a prespecified name

33

Function definition

Calling the function

Today‘s Assignment

Lab 4: Python Introduction

• 1. Fibonacci

• 2. Zeller‘s Algorithm

• 3. Rock Paper Scissors

Submit you solutions to the box, happy coding

34

