
http://aiti.mit.edu

Accelerating
Information Technology

Innovation

India Summer 2012
Lecture 11 – App Security

Wednesday, July 18, 12

Securing Your Apps!
(or: how to avoid losing your customers trust)

Wednesday, July 18, 12

Case Study:
Sony PlayStation Network

• An old unpatched security hole on a Sony server
gave access to PSN’s user database. [1]

• Hackers gained information on 77 million users
and had access to over 10 million credit cards [2]

• Shut down parts of website for 23 days [3]

• Didn’t alert users for 6 to 8 days! [2]

• Cost of upwards of $171 million to Sony [3]

Wednesday, July 18, 12

http://www.computerbild.de/artikel/cbs-News-Spiele-Sony-Playstation-Network-PSN-Anonymous-Details-Security-Apache-OpenSSH-6190529.html
http://www.computerbild.de/artikel/cbs-News-Spiele-Sony-Playstation-Network-PSN-Anonymous-Details-Security-Apache-OpenSSH-6190529.html
http://latimesblogs.latimes.com/technology/2011/05/sony-apologizes-says-10-million-credit-card-accounts-may-have-been-exposed-in-network-attack.html
http://latimesblogs.latimes.com/technology/2011/05/sony-apologizes-says-10-million-credit-card-accounts-may-have-been-exposed-in-network-attack.html
http://www.theregister.co.uk/2011/05/24/sony_playstation_breach_costs/
http://www.theregister.co.uk/2011/05/24/sony_playstation_breach_costs/
http://latimesblogs.latimes.com/technology/2011/05/sony-apologizes-says-10-million-credit-card-accounts-may-have-been-exposed-in-network-attack.html
http://latimesblogs.latimes.com/technology/2011/05/sony-apologizes-says-10-million-credit-card-accounts-may-have-been-exposed-in-network-attack.html
http://www.theregister.co.uk/2011/05/24/sony_playstation_breach_costs/
http://www.theregister.co.uk/2011/05/24/sony_playstation_breach_costs/

Why Security?

• Android is the most targeted mobile
platform for security attacks!

• Many passwords/personal info stored on
web servers/web applications.

Wednesday, July 18, 12

Threat Models

What do you think people will try to attack/steal?

Wednesday, July 18, 12

App Security

• Sign Your Apps

• Don’t Trust Outside Data

• Don’t Prompt for Passwords (Often)

• Only Send/Record What You Must

• Keep the User Informed

Wednesday, July 18, 12

Sign Your Apps

• Threat Model: Someone releases an
“update” to your app that steals users’
passwords.

• Sign your app with a digital certificate
which identifies that it came from you.

○ Required for submission to many app stores!

KEEP YOUR PRIVATE KEYS SAFE

Wednesday, July 18, 12

Sign Your Apps

DON’T SHARE
YOUR KEYS!

KEEP THEM IN
A SAFE PLACE!

Wednesday, July 18, 12

Don’t Trust Outside Data

• Threat Model: Someone sends you bad data
to crash your program (or steal data!)

• Always check your inputs (from local
content providers or the Internet!)

○ Are they null?

• Define your own permissions.

Wednesday, July 18, 12

Don’t Prompt for
Passwords (Often)

• Threat Model: Someone makes a lookalike
app that asks for a password to steal one!

• Take a password once and cache a local
authentication token (like a cookie).

• Refresh the authentication token often.

Wednesday, July 18, 12

Only Send/Record
What You Must

• Threat Model: Someone uses a flaw in your
application/server to steal IMEIs so they
know people who use your app!

• Don’t identify users by phone numbers

○ Hash, or generate a unique identifier

○ Don’t use IMEIs either.

• Don’t keep location/payment info for long.

Wednesday, July 18, 12

Keep the User Informed

• The user might not trust your app.

• Build trust by being open about what you
collect and what you use it for.

• Have a Privacy Policy

○ Make it readily known to your users.

○ Inform them of changes in plain language.

• Android forces use of permissions.

Wednesday, July 18, 12

Web Security

• Secure Your Passwords

• Access Control for Sensitive Pages

• Check Your Input Data

• Adding Encryption

• Secure Your Cookies

• Prevent Your Data from Leaking

• Protect Your User

Wednesday, July 18, 12

Secure Your Passwords

• Threat Model: Attackers may try to steal
users’ passwords to pretend to be users.

• ALWAYS hash AND salt passwords
○ Hash keeps passwords from being plaintext.
■ e.g. Yahoo password leak

○ Salt keeps passwords from being easily looked
up in “rainbow tables” (reverse lookup of hash)
■ e.g. LinkedIn password leak

○ Django does this too.

Wednesday, July 18, 12

Access Control for
Sensitive Pages

• Threat Model: People may guess hidden
“delete” or “edit” pages to try to change
site data.

• Use access control to restrict who can
access a page
○ Authenticate the user and authorize their access
○ Django has access control if you want

• Or just don’t implement edit/delete pages!

Wednesday, July 18, 12

Check Your Input Data

• Threat Model: Attacker might change cost
from positive to negative to “pay” negative
money (you pay him for his use of service!)

• Never trust your user’s data!

○ Validate yourself, don’t trust Django, although
Forms are better than nothing.

○ Escape data for SQL (prevent SQL injection)

Wednesday, July 18, 12

Adding Encryption

• Threat Model: Someone might listen to the
data between you and your customer.

• Use SSL to encrypt private communication

○ Passwords, payment info, addresses

My password is “abc” My password is “abc”

Wednesday, July 18, 12

Send 50 rupees to Mallory Send 500 rupees to Mallory

Adding Encryption

• Threat Model: Someone might pretend to
be you to alter data from a customer.

• Use SSL to encrypt private communication

○ Passwords, payment info, addresses

Wednesday, July 18, 12

Secure Your Cookies

• Threat Model:
○ Cookies identify the user and “save” the login.
○ Other websites could force users to do actions

without their knowledge via cookies (cross-site
request forgery)

• Use a secret key to generate unique CSRF
tokens that cannot be forged.
○ Django does this, if you don’t share (and

randomize) your SECRET_KEY

Wednesday, July 18, 12

Prevent Your Data from
Leaking

• Threat Model: People may use your site
against you; run their code from your site!

○ Cross-site Scripting (XSS)

• Always clean and escape the HTML data
you show users.

○ Django does by default, but you should check!

• Don’t use eval()!

Wednesday, July 18, 12

Prevent Your Data from
Leaking

• Threat Model: People may try to use a hole
in your software to get a command-line or
system files

○ Root Exploit

• Keep your software/libraries up to date!

○ App Engine should do this, but just in case...

Wednesday, July 18, 12

Protect Your User

• Threat Model: An attacker fakes a Facebook
page to steal their login info (Phishing)

• Build trust with your user.
○ Use their name, remind them that you never

request login information by e-mail

• Let user select a custom image to know it’s
from your site!
○ Much better: Two-factor authentication

Wednesday, July 18, 12

References

• Android Developer Site: “Designing for Security”
<http://developer.android.com/guide/practices/security.html>

• Android Developer Site: “Permissions”
<http://developer.android.com/guide/topics/security/permissions.html>

• “Android Security Overview”:
<http://source.android.com/tech/security/index.html>

• “Mobile Application Security”:
<http://www.cio.ca.gov/OIS/Government/events/documents/
Mobile_Application_Security.pdf>

• “Google Code University: Web Security”
<http://code.google.com/edu/security/index.html>

• “Mobile Web Application Best Practices” from the W3C:
<http://www.w3.org/TR/mwabp/>

Wednesday, July 18, 12

http://developer.android.com/guide/practices/security.html
http://developer.android.com/guide/practices/security.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://source.android.com/tech/security/index.html
http://source.android.com/tech/security/index.html
http://www.cio.ca.gov/OIS/Government/events/documents/Mobile_Application_Security.pdf
http://www.cio.ca.gov/OIS/Government/events/documents/Mobile_Application_Security.pdf
http://www.cio.ca.gov/OIS/Government/events/documents/Mobile_Application_Security.pdf
http://www.cio.ca.gov/OIS/Government/events/documents/Mobile_Application_Security.pdf
http://code.google.com/edu/security/index.html
http://code.google.com/edu/security/index.html
http://www.w3.org/TR/mwabp/
http://www.w3.org/TR/mwabp/

Credits

• More about the Sony breach can be found via Wikipedia:
<http://en.wikipedia.org/wiki/PlayStation_Network_outage>

• The web security segment is made with apologies to Victor Costan, whose
presentation “Security for Web Applications” served as a more detailed model:
<http://courses.csail.mit.edu/6.857/2012/files/L06-Costan-web-security/html/all.html>

• The image on slides 17 and 18 is “Man in the middle attack” by Miraceti
<http://commons.wikimedia.org/wiki/File:Man_in_the_middle_attack.svg>
It is licensed under a Creative Commons Attribution-Share Alike 3.0
Unported license.

Wednesday, July 18, 12

http://en.wikipedia.org/wiki/PlayStation_Network_outage
http://en.wikipedia.org/wiki/PlayStation_Network_outage
http://courses.csail.mit.edu/6.857/2012/files/L06-Costan-web-security/html/all.html
http://courses.csail.mit.edu/6.857/2012/files/L06-Costan-web-security/html/all.html
http://commons.wikimedia.org/wiki/File:Man_in_the_middle_attack.svg
http://commons.wikimedia.org/wiki/File:Man_in_the_middle_attack.svg
http://en.wikipedia.org/wiki/en:Creative_Commons
http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en

