
Parsing JSON

Web services are interfaces that are provided by web applications so that other programs may access
data stored in each application. For example, the Google Maps API [1] is a web service that provides
access to the data in Google Maps.

Web services typically behave similarly to normal web pages. Data is first retrieved from a URL (e.g.
<http://maps.googleapis.com/maps/api/service/output?parameters>). This data is usually
provided in a text-based format, commonly either XML (eXtensible Markup Language) [2] or JSON
(JavaScript Object Notation) [3], which may be “parsed” so that the information in the format may be
used by the application. In this lab, we will be working with data in the JSON format, which is more
commonly used than XML [4].

JSON is a compact format which may be used to represent data in the basic types of strings, numbers,
and Boolean (true/false) values, as well as a null value. JSON also supports two compound types:
objects (maps) and arrays. JSON is based on JavaScript (C-like) syntax, so the basic string, number,
and boolean values look much like they do in C:

• "string" is a string containing the characters “s”, “t”, “r”, “i”, “n”, and “g” in that order.
C-like character escapes are also supported (e.g. "\n" represents a line-break, while "\\"
represents a single backslash character and "\"" represents a literal double-quote). Unlike C,
however, the "\x" escape is not supported for hexadecimal data, so binary data is not supported
in JSON.

• Strings do support Unicode characters both as literal characters and using the escape "\u"
followed by four hexadecimal digits representing the Unicode character code (e.g. both "अ"
(in the UTF-8 encoding) and "\u0905" represent the Devanagari character “अ”)

• 10 is a number representing the integer 10, while -3.14 is a number representing the decimal
number -3.14. Exponents in base-10 may be constructed using the letter e (e.g. 1.6e-6 for
1.6×10-6)

• true is the Boolean true value, while false is the Boolean false value.

• null is the null value.

The compound types of objects and arrays more closely resemble JavaScript, but still may look
familiar to Python or PHP developers:

• Arrays begin and end with square brackets, and items in the array are separated by commas.
For example, ["string", 1, true] is an array containing three items: the string “string”, the
number 1, and the Boolean true value in that order.

[1] <https://developers.google.com/maps/documentation/webservices/>

[2] <http://www.w3schools.com/xml/xml_whatis.asp> is a nice overview of XML.

[3] <http://www.json.org/> is the home of the JSON standard.

[4] <http://www.jondev.net/articles/Android_XML_SAX_Parser_Example> provides a short example of using XML
with Android, while IBM has a longer, more detailed, example on their developerWorks website at
<http://www.ibm.com/developerworks/opensource/library/x-android/>.

https://developers.google.com/maps/documentation/webservices/
http://www.ibm.com/developerworks/opensource/library/x-android/
http://www.jondev.net/articles/Android_XML_SAX_Parser_Example
http://www.json.org/
http://www.w3schools.com/xml/xml_whatis.asp

• Objects are like C++ maps or Python dictionaries and contain key-value pairs. Keys are always
strings. JSON objects begin and end with curly brackets. A single key-value pair has its key
first, followed by a colon and its value (e.g. {"key": "value"} is an object containing a single
key-value pair whose key is the string “key” and whose value is the string “value”). Multiple
key-value pairs are separated by commas, just like items in an array (e.g. {"a": 1, "b": 2}).

On Android, JSON support is provided by a version of the org.json package [5]. This package is very
easy to use once you have obtained the JSON data as a String object, provided that you know what
data type will be returned.

Basic types such as strings, numbers, and Boolean values, are represented in Java as their
corresponding types (String, int/double, boolean, respectively). Compound types are represented
using classes in the org.json package. JSON arrays are represented by the class
org.json.JSONArray; JSON objects are represented by the class org.json.JSONObject. Null values
are represented by the instance JSONObject.NULL.

To parse compound JSON data from a String, you may simply create a new Java object of the
appropriate type, passing the String as the only argument to the constructor.

For example, if a JSON object is in the String jsonString, then org.json.JSONObject may be used
to parse it using the following code:

import org.json.JSONObject;

JSONObject jsonData = new JSONObject(jsonString);

Likewise, if a JSON array is in the String jsonString, then org.json.JSONArray may be used to
parse it using the following code:

import org.json.JSONArray;

JSONArray jsonData = new JSONArray(jsonString);

You will generally never come across a base type represented in JSON from a web service. Every
JSON web service will return either a JSON object or a JSON array.

Retrieving data from a JSONObject or JSONArray is also easy.

• Values for the keys in a JSONObject may be obtained using get*(String key) methods (e.g.
getBoolean(key) will get a boolean value, getInt(key) will get an int value,
getString(key) will get a String value, getJSONObject(key) will get a JSONObject value,
and so on).

• The basic get(String key) method will return an appropriate Java Object value (e.g.

[5] <http://www.json.org/java/index.html>, but also see
<http://developer.android.com/reference/org/json/package-summary.html> in the Android documentation.

http://developer.android.com/reference/org/json/package-summary.html
http://www.json.org/java/index.html

Boolean, Integer, String, JSONObject, JSONObject.NULL, etc.) if you do not know what
type to expect. You can then use the instanceof operator to test the class of the object
returned.

• isNull(String key) may be used to test if the value of a key is null. It will also return
true if key does not exist in the JSONObject.

• NOTE: The get*(String key) methods will throw a JSONException if key is not found
or if the value is not of the right type! Use has(String key) to test if a key exists, or the
related opt*(String key) methods which will return a default value if the key does not
exist or the value is of the wrong type.

• keys() will return an iterator Java object (java.util.Iterator) which you can use to iterate
through the keys in a JSONObject.

• Values in a JSONArray may be obtained using get*(int index), isNull(int index) and
opt*(int index) which behave similarly to the JSONObject versions, except that they take an
integer index into the array.

• Both JSONObject and JSONArray provide the count() method to return the number of items in
the object/array.

As an example, here is some code which tries to get data from our JSONObject jsonData.

import org.json.JSONObject;

String stringValue;
int intValue;
boolean optionalWasNull = false;
try {
 // Set stringValue to the value for the key "string" or throw an
 // exception if it is not present, or is not a string.
 stringValue = jsonData.getString("string");

 // Set intValue to the value for the key "int" or the value 3 if
 // it is not present, or is not an integer.
 intValue = jsonData.optInt("int", 3);

 if (jsonData.has("optional") && jsonData.isNull("optional")) {
 // If the key "optional" is present and has a null value
 // (isNull() returns true if "optional" is not present)
 // we will execute this code.
 optionalWasNull = true;
 }
} catch (JSONException e) {
 // We will jump here if the key "string" is not present or does
 // not have a string value.
}

Working with ImageViews and Bitmaps

ImageView views are used to display static images in Android. They are available under the Images &
Media tab under the graphical layout editor. ImageViews may have their image content set at design
time as a property, src, or in the code using the setImageDrawable(Drawable d) or
setImageBitmap(Bitmap b) methods of the ImageView.

The src property or setImageDrawable() method may be used to set the image to the contents of a
drawable resource [6]. These drawable resources (e.g. PNG, JPEG, and GIF files) are stored in the

[6] <http://developer.android.com/guide/topics/resources/drawable-resource.html> has more information
about drawable resources.

Illustration 2: Setting the src property from the Properties tab

Illustration 1: The Graphical Layout window, with ImageView visible

http://developer.android.com/guide/topics/resources/drawable-resource.html

drawable-* directories in your res/ directory [7], and are mapped to resource ids based on their file
name. For example, a file named res/drawable/image.jpg will be named @drawable/image when
used in XML files (such as in the Graphical Layout editor). In your code, such a drawable may be
referenced as R.drawable.image in your code. (NOTE: Just as string resources may be retrieved as
String objects by using [getResources().]getString(R.string.myString), so may drawable
resources be retrieved as Drawable objects using [getResources().]getDrawable(
R.drawable.image).)

Any images that are not a part of your project (e.g. images you retrieve from the Internet) may be used
in the form of Bitmap objects. Bitmap objects are usually constructed using the BitmapFactory class.
Once you have obtained your data as an array of bytes such as by writing incoming binary data from
an InputStream in to a ByteArrayOutputStream out:

byte[] byteBuffer = new byte[256];
while (true) {
 int bytesRead = in.read(byteBuffer); // Read into byteBuffer
 if (bytesRead < 0) break;
 out.write(byteBuffer, 0, bytesRead); // Write only bytes read
}
byte[] data = out.toByteArray();

it is possible to construct a Bitmap object using the BitmapFactory.decodeByteArray() method:

BitmapFactory.Options options = new BitmapFactory.Options();
Bitmap bitmap = BitmapFactory.decodeByteArray(
 data, 0, data.length, options);

The Bitmap returned may then be passed as the argument to the ImageView’s setImageBitmap()
method.

[7] The different drawable-* directories (hdpi, ldpi, mdpi, xhdpi) relate to the resolution of the screen. For more
information about supporting different screen resolutions, check out
<http://developer.android.com/guide/practices/screens_support.html>.

http://developer.android.com/guide/practices/screens_support.html

	Parsing JSON
	Working with ImageViews and Bitmaps

