
Accelerating
Information Technology

http://aiti.mit.edu

Ghana Summer 2012
Lecture DJ06– Django Forms

Forms
• How do we add data to the database?

– admin interface
– command line
– forms (user-submitted)

• Forms are typically submitted using
HTTP POST or GET protocols

2

Let’s look at HTML forms

3

Forms step-by-step
1. Modify template so that it contains

your form

4

Forms - template

5

<html>
<form action=“” method=“POST”>

{{ form.as_p }}
<input type=“submit” value=“Submit!”>

</form>
</html>

• We can render the form context variable a few different ways
• Try looking at the page source to see what HTML django is
using behind the scenes in each case...
• Try {{form.as_ul}} instead

Forms step-by-step
1. Modify template so that it contains

your form
2. Create your Form class in forms.py or

views.py

6

Django Form class

7

class TextForm(forms.Form):
text_message = forms.CharField()
phone_number = forms.CharField()

Forms step-by-step
1. Modify template so that it contains

your form
2. Create your Form class
3. Modify your View

8

Remember Http request?

9

from django.http import HttpResponse

def hello(request):
 return HttpResponse("Hello world")

• HttpRequest has a lot of interesting functions
• Today, we care about: POST and GET

POST and GET
• Contain information submitted by the

user
• “dictionary-like” objects
• GET = when you only want to display

data
• POST = when you do other things as

well, like change your database

10

Forms

11

POST data
• Using the request.POST dictionary, we
can access the attributes we want to
use…

12

def mirror_response(request):
if request.method == “POST”:

text_string =request.POST[‘text_mesage’]
phone_number = request.POST[‘phone_number’]
return HttpResponse(‘%s sent the text message %s’)

else:
return HttpResponse(“This is not a helpful way to
handle non-POST requests”)

Django Form class
• The Form class can help us out…

13

class TextForm(forms.Form):
 text_message = forms.CharField()
 phone_number = forms.CharField()

def sms_handler(request):
if request.method == “POST”:

text_info = TextForm(request.POST)
if text_info.is_valid():

form_data = text_info.cleaned_data
text_body = text_info[‘text_message’]
phone_number = text_info[‘phone_number’]
return HttpResponse(“%s sent %s” %
(phone_number,text_body))

else:
my_rc = RequestContext(request,{‘form’:TextForm()}
render_to_response(‘blank_window.html’,my_rc)

Forms and Models
• What if we want to let users add data

to our database?
• Add a book
• Add a comment to our blog
• Remember that you already have your

model defined, now you want a way to
represent that model through a form

14

We want this (but hopefully
prettier)

15

We want this (but hopefully
prettier)

16

Remember Movie example?

17

class Movie(models.Model):
rating = models.IntegerField()
title = models.CharField(max_length=100)
genre = models.CharField()
lead_actor = models.ForeignKey(Actor,related_name=ʻlead
actorʼ)
support_actors = models.ManyToManyField
(Actor,related_name=ʻsupportʼ)

We want this:

18

Bad solution

19

class MovieForm(forms.Form):
title = forms.CharField()
genre = forms.CharField()
rating = forms.IntegerField()
what should we do for lead actor and
supporting actors?
lead_name = forms.CharField()
support_names = forms.CharField()

How do we create a Movie instance now and put it
in our database?

Bad solution

20

def get_movie_data(request):
if request.method == “POST”:

movie_form = MovieForm(request.POST)
my_movie = Movie(title=movie_form.title,
rating=movie_form.rating, genre
= movie_form.genre)
lead_actor = Actor.objects.get(name=movie_form.name)
all_support_names = movie.support_names.split(“,”)
my_movie.save()
for some_name in all_support_names:

my_movie.supporting_actors.add(Actor.objects.get
(name=some_name))
my_movie.save()

Bad solution
• Advantages:

– Exercise our QuerySet API Skills
• Disadvantages:

– That was miserable

21

ModelForm Class
• Let’s create a form based on our Movie

model

22

from django.forms import ModelForm
from models import Movie
class MovieForm(ModelForm):
class Meta:
model = Movie

ModelForm Class
• One view function for two cases:

– the user has submitted the form
– the user wants to fill out the form

23

def get_movie_data(request):
if request.method == “POST”:

movie_form = MovieForm(request.POST)
my_movie = movie_form.save()
return HttpResponse(“The movie %s was successfully entered
in the database”)

else:
my_form = MovieForm()
my_rc = RequestContext(request,{‘form’:my_form})
return render_to_response(‘movie_app/
movie_form.html’,my_rc)

ModelForm Class
• Django does a ridiculous amount of HTML
work on our behalf

24

