
Accelerating
Information Technology

Innovation
http://aiti.mit.edu

Ghana Summer 2012
Lecture DJ04 – Django Views

Friday, July 6, 2012

Browser

urls.py

ViewModel/Database

Simple Diagram

HTTP Request

HTTP Request

Data Request

Data
HTTP Response

Friday, July 6, 2012

Web Browsing
Users submit requests to websites
through:

– Desktop web browsers and applications
– Smartphone web browsers and applications

• Django calls a view function associated
with the URL

• User defines a map between the URL and
the view function

Friday, July 6, 2012

Browser

urls.py

ViewModel/Database

Simple Diagram

HTTP Request

HTTP Request

Data Request

Data
HTTP Response

Friday, July 6, 2012

Hello World! Django
Sample URLConf and view function below

hello_world/urls.py

from django.conf.urls.defaults import
patterns, include, url
urlpatterns = patterns('',

url(r’^$', ‘views.hello_world’)

hello_world/views.py

from django.http import HttpResponse
def hello_world(request):

return HttpResponse(“Hello world!”)

Friday, July 6, 2012

Hello World! Django
Letʼs see the results!
– python manage.py runserver

• Cool! How do we make more exciting websites?
• Models- Store useful information
• Templates- Produce dynamic pages
• Views- We can do a lot more than “Hello world!”

Friday, July 6, 2012

Checkpoint
• Which file should we modify (and how) if
we want to see “Hello World!” at the
following URL?
– http://127.0.0.1:8000/hello_world

• Which file(s) should we modify (and how)
if we want to see “Hello Mars” at the
following URL?
– http://127.0.0.1:8000/hello_mars

Friday, July 6, 2012

http://127.0.0.1:8000/hello_world
http://127.0.0.1:8000/hello_world

Views

• How can we customize the view?
– parameters from the URL (regexps)

Friday, July 6, 2012

Views

• Parameters in the URL
– Regular Expressions specify the rules for URL’s

• Resources available online to learn more

• Consider a universal greeting:
urlpatterns = patterns(‘’, url(r'^hello_(?
P<planet>\w+)/$', 'views.hello_anyone'),

)

Friday, July 6, 2012

Views
• Universal greeting
urlpatterns = patterns('’,
url(r'^(hello)_w+/$', 'views.hello_anyone'),
)
• Our view function has two parameters

• request (HttpRequest object)
• planet (string object)

from django.http import HttpResponse

def hello_anyone(request,planet):

my_response = "Hello ” + str(planet)
return HttpResponse(my_response)

Friday, July 6, 2012

Views
• Testing it out…

Friday, July 6, 2012

Database Interaction

•We want to be able to display information
from our database tables as well!

Friday, July 6, 2012

Getting all data

Blog.objects.all()

Gets all the data associated with
the model but does NOT execute
the query

It’s not a list, it’s an instance of
QuerySet

Friday, July 6, 2012

Filtering Data
exact: gets an exact match

 Blog.objects.filter(title__exact='cool')
 Blog.objects.filter(title='cool') #__exact is

implied
contains: find if a match is contained inside a field

 Blog.objects.filter
(blog_text__contains='cool')

icontains: case insensitive contains
 Blog.objects.filter
(author__icontains='smith')

More here: https://docs.djangoproject.com/en/1.3/ref/models/querysets/
#field-lookups

Friday, July 6, 2012

Ordering
Blog.objects.order_by('-pub_date',
'title')

 First orders by pub_date in descending order
(hence the negative sign). If there are
pub_dates that are equivalent, then title is
ordered in ascending order.

Friday, July 6, 2012

Values
Blog.objects.values()

 Returns a ValueQuerySet, which returns a list
of dictionaries when executed

Blog.objects.values('title', 'body')
 Returns only the fields title and body in the

dictionary
This list contains a Blog object.
>>> Blog.objects.filter(name__startswith='Beatles')
[<Blog: Beatles Blog>]

This list contains a dictionary.
>>> Blog.objects.filter
(name__startswith='Beatles').values()
[{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the
latest Beatles news.'}]

Friday, July 6, 2012

Distinct
Blog.objects.distinct()

 If there are any duplicate rows, only one is
returned

 This will rarely work like this, because you often
will already have a distinct field, like an id

Blog.objects.distinct('title', 'body')
 This will get all unique title-body

combinations

Friday, July 6, 2012

Slicing

Blog.objects.all()[:5]
Gets the first 5 blog objects
The limit happens in the sql query

 ex: SELECT * FROM users LIMIT 5

Friday, July 6, 2012

Get

Gets a single row

raises MultipleObjectsReturned if
more than one object was found.

raises a DoesNotExist exception if an
object wasn't found for the given parameters.

Friday, July 6, 2012

Get continued
Blog.objects.get(id=5)

 Returns a single QuerySet if there is a
row that exists, otherwise an error ensues

Blog.objects.filter(id=5)[0]
 Similar, except no exceptions are thrown

Friday, July 6, 2012

When are QuerySets Evaluated?
Iteration
for e in Entry.objects.all():
 print e.headline

Boolean
if Entry.objects.filter(headline="Test"):
 print "There is at least one Entry with
the headline Test"

Friday, July 6, 2012

Lookups that span relationships
Blog.objects.filter
(comment__title__contains='Lennon')

 Retrieves all Blog objects with a comment
whose title contains 'Lennon'

Friday, July 6, 2012

Views Example
def get_titles(request, limit=100):
 book_list = Book.objects.all()[:limit]
 response = ‘List of titles is:’
 for b in book_list:

response+=str(b.title)
 return HttpResponse(response)

Friday, July 6, 2012

