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Web Browsing
Users submit requests to websites
through:

– Desktop web browsers and applications
– Smartphone web browsers and applications

• Django calls a view function associated
with the URL

• User defines a map between the URL and
the view function
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Hello World! Django
Sample URLConf and view function below

hello_world/urls.py

from django.conf.urls.defaults import 
patterns, include, url
urlpatterns = patterns('',

url(r’^$', ‘views.hello_world’)

hello_world/views.py

from django.http import HttpResponse
def hello_world(request):

return HttpResponse(“Hello world!”)
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Hello World! Django
Letʼs see the results!
– python manage.py runserver

• Cool! How do we make more exciting websites?
• Models- Store useful information
• Templates- Produce dynamic pages
• Views- We can do a lot more than “Hello world!”
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Checkpoint
• Which file should we modify (and how) if
we want to see “Hello World!” at the
following URL?
– http://127.0.0.1:8000/hello_world

• Which file(s) should we modify (and how)
if we want to see “Hello Mars” at the
following URL?
– http://127.0.0.1:8000/hello_mars
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Views

• How can we customize the view?
– parameters from the URL (regexps)

Friday, July 6, 2012



Views

• Parameters in the URL
– Regular Expressions specify the rules for URL’s

• Resources available online to learn more

• Consider a universal greeting:
urlpatterns = patterns(‘’, url(r'^hello_(?
P<planet>\w+)/$', 'views.hello_anyone'),

)
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Views
• Universal greeting
urlpatterns = patterns('’,
url(r'^(hello)_w+/$', 'views.hello_anyone'),
)
• Our view function has two parameters

• request (HttpRequest object)
• planet (string object)

from django.http import HttpResponse

def hello_anyone(request,planet):

my_response = "Hello ” + str(planet)
return HttpResponse(my_response)
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Views
• Testing it out…
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Database Interaction

•We want to be able to display information 
from our database tables as well!
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Getting all data

Blog.objects.all()

Gets all the data associated with 
the model but does NOT execute 
the query

It’s not a list, it’s an instance of 
QuerySet
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Filtering Data
exact: gets an exact match

 Blog.objects.filter(title__exact='cool')
 Blog.objects.filter(title='cool') #__exact is 

implied
contains: find if a match is contained inside a field

 Blog.objects.filter
(blog_text__contains='cool')

icontains: case insensitive contains
 Blog.objects.filter
(author__icontains='smith')

More here: https://docs.djangoproject.com/en/1.3/ref/models/querysets/
#field-lookups
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Ordering
Blog.objects.order_by('-pub_date', 
'title')

 First orders by pub_date in descending order 
(hence the negative sign). If there are 
pub_dates that are equivalent, then title is 
ordered in ascending order.
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Values
Blog.objects.values()

 Returns a ValueQuerySet, which returns a list 
of dictionaries when executed

Blog.objects.values('title', 'body')
 Returns only the fields title and body in the 

dictionary
# This list contains a Blog object.
>>> Blog.objects.filter(name__startswith='Beatles')
[<Blog: Beatles Blog>]

# This list contains a dictionary.
>>> Blog.objects.filter
(name__startswith='Beatles').values()
[{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the 
latest Beatles news.'}]

Friday, July 6, 2012



Distinct
Blog.objects.distinct()

 If there are any duplicate rows, only one is 
returned

 This will rarely work like this, because you often 
will already have a distinct field, like an id

Blog.objects.distinct('title', 'body')
 This will get all unique title-body 

combinations
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Slicing

Blog.objects.all()[:5]
Gets the first 5 blog objects
The limit happens in the sql query

 ex: SELECT * FROM users LIMIT 5
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Get

Gets a single row

raises MultipleObjectsReturned if 
more than one object was found. 

raises a DoesNotExist exception if an 
object wasn't found for the given parameters. 
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Get continued
Blog.objects.get(id=5)

 Returns a single QuerySet if there is a 
row that exists, otherwise an error ensues

Blog.objects.filter(id=5)[0]
 Similar, except no exceptions are thrown
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When are QuerySets Evaluated?
Iteration
for e in Entry.objects.all():
    print e.headline

Boolean
if Entry.objects.filter(headline="Test"):
   print "There is at least one Entry with 
the headline Test"
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Lookups that span relationships
Blog.objects.filter
(comment__title__contains='Lennon')

 Retrieves all Blog objects with a comment 
whose title contains 'Lennon'
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Views Example
def get_titles(request, limit=100):
   book_list = Book.objects.all()[:limit]
   response = ‘List of titles is:’
   for b in book_list:

response+=str(b.title)
   return HttpResponse(response)
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