
Accelerating
Information Technology

http://aiti.mit.edu

Ghana Summer 2012
Lecture DJ02 – Models

Models
• Suppose we want to create a web

application to manage data about
thousands of movies

• What information would we want to store?
– Title
– Rating (scale from 1 to 5)
– Genre
– Lead Actor
– Supporting Actors

2

Models
• How would we think about storing this

data?
– Lecture 4: Dictionaries and lists are used

to store data in Python
• Web applications use databases

– Lots of options varying syntax
– Each table represents a different model
– Each column is a different attribute

• Django: Common interface to almost
all database solutions 3

Example of a DB table

4

Movies Title Rating Genre Lead Actor Support
Actors

1 “Iron Man” 7.9 “Action” “Robert
Downey Jr.”

“Gwyneth
Paltrow”

Models
• Djangoʼs database interface works with any

object of type django.db.models.Model
• To create your own Model, use inheritance!

5

from django.db import models
class Movie(models.Model):

attributes go here

Models
• Models have attributes: Fields
• We create ʻinstancesʼ of Model objects in a

different way (no __init__ function
necessary)

6

from django.db import models
class Movie(models.Model):

attributes go here
self.title = models.CharField(max_length=100)
self.rating = models.IntegerField()

Models
• Some attributes indicate special relationships to other

Model objects
• ForeignKey: OneToMany
• ManyToManyField: Well, itʼs a many-to-many field

7

from django.db import models
class Movie(models.Model):

rating = models.IntegerField()
title = models.CharField(max_length=100)
genre = models.CharField()

lead_actor = models.ForeignKey
(Actor,related_name=‘lead actor’)
support_actors = models.ManyToManyField
(Actor,related_name=‘support’)

Checkpoint: Models
• Build a django Model class for Actor

– What does the class inherit from?
– What attributes should the class have?

• Build a django Model class for Award
– What does the class inherit from?
– What attributes should the class have?

8

Checkpoint:Models
• Actor Model class:

• Attributes:
– name: a string - use a CharField
– birth_date: a datetime.date - use a
DateField

9

class Actor(models.Model):
name = models.CharField(max_length=100)
birth_date = models.DateField()

Checkpoint: Models
• What type of field should we use for the title
of the Award?

– CharField
• What type of field should we use to denote
the winning actor?

– ForeignKey (one actor, many awards)
• What type of field should we use for the
nominees (each nominee is a Movie)?

– ManyToManyField (each movie can be
nominated for many awards, each award has
many nominees) 10

Checkpoint: Models

11

class Award(models.Model):
title = models.CharField(max_length=100)
sponsor = models.CharField(max_length=100)
year = models.DateField()
winning_actor = models.ForeignKey(Actor)
winning_movie = models.ForeignKey(Movie,related_name=ʻwinning
movieʼ)
actor_nominees = models.ManyToMany(Actor, related_name =
“no”)

• Wait! How does Actor relate to the Award class that we just
wrote?

• we only need to specify relation in one of the models

Models
• So what happens when we run

python manage.py syncdb

• Database is updated!
• First time you run it, database is

created

12

Models
• Add the application with the relevant models to the
list of INSTALLED_APPS
• Specify the path to your new database
• Validate your Model classes

– django-admin.py validate

• Create or update the models in our project
– python manage.py syncdb

• Later: reset the database (clear all information)
– python manage.py reset app_name

13

Models from yesterday

14

class Notes(models.Model):
 title = models.CharField(max_length=255)
 author = models.CharField(max_length=255)
 content = models.TextField()
 def __unicode__(self):
 return self.title

15

Models from yesterday

16

class Notes(models.Model):
 title = models.CharField(max_length=255)
 author = models.CharField(max_length=255)
 content = models.TextField()
 def __unicode__(self):
 return self.title

• If we want to be able to add notes to the table using
admin page, inside of admin.py:

 admin.site.register(Notes)

