
Accelerating
Information Technology

http://aiti.mit.edu

Ghana Summer 2012
Lecture 09 – Regular Expressions

What do the following strings
have in common?

• jovana@mit.edu
• louis.a.sobel@gmail.com
• tony.blair@mail.gov.uk
• 1luvbieber@teenagegirls.hotmail.com
• xyz123@ugl.edu.gh

2

mailto:jovana@mit.edu
mailto:jovana@mit.edu
mailto:louis.a.sobel@gmail.com
mailto:louis.a.sobel@gmail.com
mailto:tony.blair@mail.gov.uk
mailto:tony.blair@mail.gov.uk
mailto:ladygaga123@sucks.at.music.com
mailto:ladygaga123@sucks.at.music.com
mailto:ladygaga123@sucks.at.music.com
mailto:ladygaga123@sucks.at.music.com

What do the following strings
have in common?

• {some letters or numbers or dots}
• @
• {some letters or numbers and at least

one dot}

3

mailto:jovana@mit.edu
mailto:jovana@mit.edu
mailto:jovana@mit.edu
mailto:jovana@mit.edu
mailto:jovana@mit.edu
mailto:jovana@mit.edu

Regular Expressions
• Describes patterns of text

– No meaning associated, just characters

4

Examples of Regular Expressions

• "All English words that have a q without a u
following"

• "Words that start and end with the same letter"

• "What text is embedded in the <H3> tag?"

• Strings that are valid email addresses.

5

Pattern Matching
• A Regular expression matches the string if

an instance of the pattern described by the
regular expression can be found in the
string.

• If we say “matches in the string” may make
it a little more clearer.

• Sometimes people also say that the string
matches the regular expression.

6

Pattern Matching
• We use REs to determine if a given String

matches a pattern
– RE will return all matches to pattern in the

String
– Example:

• Pattern = "rose"
• String = "A Rose is a rose is a rose.”

7

Literal Patterns

• Plain, literal text look to match exactly with
parts of the text.
– Example:

• Pattern = "rose"
• String = "A Rose is a rose is a rose."

– Example:
• Pattern "e i"
• String = "A Rose is a rose is a rose"

8

Character Classes
• We can group multiple characters into

character classes

• Some classes are provided by Java:
– . matches any single character, only stops at

newline
• Example: ".ose" matches "Rose" "rose", not "ose"

– \s matches whitespace
• newline (\n), space, tab (\t)
• Example: ".\s." matches "a b", "a\tb", not "ab"

9

Character Classes
• \S matches non-whitespace character

– Example: "\S\S" matches "ab", "a!", not "a "

• \d matches single digit

• \D matches single non-digit (including
whitespace)

• \w matches word character
– A-Z, a-z, 0-9, and '_' matched

10

Custom Character Classes
• You can define custom character classes

– Match true if any character in custom class matched
– Use [] to denote custom character class

• Example:
– [aeiou]: vowels

• "a", "e" match "x" does not

• Can also specify ranges:
– [A-Z]: uppercase letter
– [a-z]: lowercase letter

11

Anchors (Position Characters)

• Anchors allow you to designate where a
match can occur
– ^ match to beginning of String

• Example:
– Pattern: "^[Aa] [Rr]ose"
– "A Rose is a rose is a rose."

– $ match at end of String
• Example

– Pattern: "rose$"
– "A Rose is a rose is a rose"

12

Anchors (Position Characters)

• \b matches at word boundary:
– Pattern "\brose" matches "rose" "rosemary",

but not "primrose"

13

Repetition Operators

• Repetition operators allow us to denote
that a (sub)pattern may repeat
– * zero or more repetitions

• Example: "0*\d" matches "05" "5" "0006"
– + One or more repetitions

• Example: "de+r" matches "deer" "deeer" "der" not
"debr"

– ? exactly zero or 1 occurrence
• Example "de[ae]?r" matches "der" "deer" "dear" not

"debr" "deeer"

14

Grouping

• Just like math expressions you can group
subpatterns using ()
– Pattern "(word)+" matches "word" "wordword"

"wordwordword" not "" "wordd"

15

Example: Valid Email Address

• aiti@mit.edu
– one or more word characters
– Followed by '@'
– Followed by word characters that has to have

at least one '.' somewhere
• Since '.' is an operator in a RE, we need to escape

it

16

mailto:aiti@mit.edu
mailto:aiti@mit.edu

Example: Valid Email Address

(\w)+@\w+(\.\w)+

17

Escaping

• If you want one of the RE reserved
characters to appear in your pattern you
must escape it:

• \. literal . in pattern
• * literal * in pattern
• \ { } + () are the others you must escape

18

Alternation
• | denotes logical OR operation

– Think of || operator in Java

• Examples:
– Pattern "soda|juice" matches "soda" "juice" "soda

water", not "water"
– "\w+@[\w\.]*\.(net|gov|edu)"

• Good or bad RE for emails?

• | has lowest precedence (applied last)
– Use () to avoid confusion

19

Examples of Regular Languages

Examples of Regular Languages

• (0|1)*.(0|1)* - Binary floating point numbers

Examples of Regular Languages

• (0|1)*.(0|1)* - Binary floating point numbers

Examples of Regular Languages

• (0|1)*.(0|1)* - Binary floating point numbers

• (00)* - even-length all-zero strings

Examples of Regular Languages

• (0|1)*.(0|1)* - Binary floating point numbers

• (00)* - even-length all-zero strings

Examples of Regular Languages

• (0|1)*.(0|1)* - Binary floating point numbers

• (00)* - even-length all-zero strings

• 1*(01*01*)* - strings with even number of
zeros

1. 0(0|1)*0

2. ((|0)1*)*

3. ((0|1)0(0|1))*

a. 000000
b. 01010
c. 010101
d. 101010
e. 001100

Match Strings and
Regular Expressions

1. 0(0|1)*0

2. ((|0)1*)*

3. ((0|1)0(0|1))*

a. 000000
b. 01010
c. 010101
d. 101010
e. 001100

Match Strings and
Regular Expressions

1. 0(0|1)*0

2. ((|0)1*)*

3. ((0|1)0(0|1))*

a. 000000
b. 01010
c. 010101
d. 101010
e. 001100

Match Strings and
Regular Expressions

1. 0(0|1)*0

2. ((|0)1*)*

3. ((0|1)0(0|1))*

a. 000000
b. 01010
c. 010101
d. 101010
e. 001100

Match Strings and
Regular Expressions

1. 0(0|1)*0

2. ((|0)1*)*

3. ((0|1)0(0|1))*

• All strings of 0’s and 1’s that does not
contain the substring 011

a. 000000
b. 01010
c. 010101
d. 101010
e. 001100

Match Strings and
Regular Expressions

Capture Groups

• () also used to capture text to retrieve later
– Latter in the RE pattern, or
– After the matching is complete in your Java

code

26

Capture Group used in Pattern
• All words that start and end with the same letter:

– \b(\w)\w*\1\b

• \n references a capture group
– numbered from left to right in pattern
– \0 refers to the entire string that is matched

• All words that start and end with the same 2
letters:
– \b(\w)(\w)\w*\1\2\b matches "boobo"

27

Named Capture Groups
• Capture groups can have names
• Easier to refer to than numbers
• “(P<first_name>) (P<last_name>)”

28

Greediness
• By default, repetition operators match as

much text as possible.
• Example:

– Want to match html tags.
– Pattern "</?.*>"
– String: "Some <bold>Bold</bold> text"

• Fix: be more specific of what can occur in
the tag:
– Pattern: "</?[^>]*>"

29

More Greediness Control

• By default repetition operators try to match
as much text as possible:
– Ex pattern: "bo*o" matches "booooo"

• You can use different form of operators that
are not greedy by appending ? after
operator
– Ex pattern: "bo*?o" matches "booooo"

30

Matching Options

• Several options control how matching is
performed:
– These are passed to the Pattern.compile()

method we will see later
• Important option:

– (?m): Multiline mode, ^ and $ match at newline
boundaries (every line) as well as beginning
and end of input

31

Regular Expressions in Python

32

• Lab! :(

Questions?

33

Sorry…

• Confused?
• Questions?
• How can this help you parse html?
• How can this help you parse incoming

SMS messages?
• Regular Expressions can also replace text

– Self learning!

34

More Resources

35

