
Accelerating
Information Technology

http://aiti.mit.edu

Ghana Summer 2012
Lecture 8 – Inheritance

Thursday, June 28, 2012

Agenda
• Goal

– Use objects to represent everyone in this
course

– Include:
• Instructors
• Students
• Teaching assistants

• Learn about
– Inheritance
– Multiple inheritance
– Private Variables

Thursday, June 28, 2012

class Academic:
 def __init__(self, name, university,

 status, year, area, salary, gpa):
 self.name = name
 self.university = university
 self.status = status
 self.year = year
 self.area = area
 self.salary = salary
 self.gpa = gpa
 def identify(self):
 print 'Name:’ + self.name
 print ‘Uni:’ + self.university
 print ‘Status:’ + self.s tatus
 print ‘Year:’ + str(self.year)
 print ‘Area of Study:’ + self.area
 print ‘Salary:’ + str(self.salary)
 print ‘GPA:’ + str(self.gpa)

Thursday, June 28, 2012

>>> Student1 = Academic("Louis Sobel", “MIT",
 "Student", 3, "Computer Science", 0, 5.0)

>>> Student1.identify()
Name:Louis Sobel
Uni:MIT
Status:Student
Year:3
Area Of Study: Computer Science
Salary: 0
GPA: 5.0

Thursday, June 28, 2012

5

>>> professor = Academic(“Tomas Lozano", "MIT",
"Professor", 0, "Computer Science", 1000, 0)

>>> professor.identify()
Name:Tomas Lozano
Uni:MIT
Status:Instructor
Year:0
Area of Study: Computer Science
Salary: 1000
GPA: 0

But we have extra fields we do not always need

Thursday, June 28, 2012

class Student:
 def __init__(self, name, university,
 status, year, area, gpa):

 self.name = name
 self.university = university
 self.status = status
 self.year = year
 self.area = area
 self.gpa = gpa
 def identify(self):
 print 'Name:’ + self.name
 print ‘Uni:’ + self.university
 print ‘Status:’ + self.status
 print ‘Year:’ + str(self.year)
 print ‘Area Of Study:’ + self.area
 print ‘GPA:’ + str(self.gpa)

Thursday, June 28, 2012

class Professor:

 def __init__(self, name, university, status,
 area, salary):

 self.name = name

 self.university = university

 self.status = status

 self.area = area

 self.salary = salary

 def identify(self):

 print 'Name:’ + self.name

 print ‘Uni:’ + self.university

 print ‘Status:’ + self.status

 print ‘Area of Study’ + self.area

 print ‘Salary’ + str(self.salary)

But wait, Students and Instructors share similar attributes!
Thursday, June 28, 2012

What’s wrong with both
approaches?

One class
• Sometimes variables are

irrelevant
• A very large, complex

class

Two classes
• Repeated behavior
• Increases our work
• We might not

implement shared
features the same way
in the two classes

Thursday, June 28, 2012

Inheritance
Academic

Student Professor

Thursday, June 28, 2012

class Academic:
 def __init__(self, name, university,
 status, area):

 self.name = name
 self.university = university
 self.status = status
 self.area = area
 def identify(self):
 print 'Name:’ + self.name

 print ‘Uni:’ + self.university

 print ‘Status:’ + self.status

 print ‘Area of Study:’ + self.area

Thursday, June 28, 2012

class Student(Academic):

 def __init__(self, name, university, year, area, gpa):
 Academic.__init__(self, name, university,

 "Student", area)

 self.year = year
 self.gpa = gpa

 def identify(self):

 Academic.identify(self)

 print ‘Year:' + str(self.year)

 print ‘GPA:' + str(self.gpa)

class Professor(Academic):

 def __init__(self, name, university, area, salary):

 Academic.__init__(self, name, university,
 "Instructor", area)

 self.salary = salary

 def identify(self):
 Academic.identify(self)

 print 'Salary:' + self.salary

Thursday, June 28, 2012

>>> Student1 = Student("Louis Sobel",“MIT“,3,
‘Computer Science’, 5.0)

>>> Student1.identify()
Name:Louis Sobel
Uni:MIT
Status:Student
Area of Study: Computer Science
Year:3
GPA: 5.0
>>> prof = Instructor(“Tomas Perez", "MIT",

“Computer Science”, 1000)
>>> prof.identify()
Name:Tomas Perez
Uni:MIT
Status:Instructor
Area of Study: Computer Science
Salary: 1000

Thursday, June 28, 2012

Agenda
• Goal

– Use objects to represent everyone in this
course

– Include:
• Instructors
• Students
• Students who assist instructors

• Learn about:
– Inheritance
– Multiple inheritance
– Private Variables

Thursday, June 28, 2012

Multiple Inheritance
Academic

Student Professor

TA
Thursday, June 28, 2012

class Academic:
 def __init__(self, name, university,
 status, area):

 self.name = name
 self.university = university
 self.status = status
 self.area = area
 def identify(self):
 print 'Name:’ + self.name

 print ‘Uni:’ + self.university

 print ‘Status:’ + self.status

 print ‘Area of Study:’ + self.area

Thursday, June 28, 2012

class Student(Academic):

 def __init__(self, name, university, year, area, gpa):
 Academic.__init__(self, name, university,

 "Student", area)

 self.year = year
 self.gpa = gpa

 def identify(self):

 Academic.identify(self)

 print ‘Year:' + str(self.year)

 print ‘GPA:' + str(self.gpa)

class Professor(Academic):

 def __init__(self, name, university, area, salary):

 Academic.__init__(self, name, university,
 "Instructor", area)

 self.salary = salary

 def identify(self):
 Academic.identify(self)

 print 'Salary:' + self.salary

Thursday, June 28, 2012

class TeachingAssistant(Student, Professor):
 def __init__(self, name, university, year, area,

gpa, salary):
 Professor.__init__(self, name, university,

 area, salary)
 Student.__init__(self, name, university, year,

gpa)
 self.status = “Teaching Assistant”

>>> TA = TeachingAssistant("Jovana Knezevic",

 “MIT", 5, “Computer Science”, 5.0, 100)
>>> TA.identify()
Name:Jovana Knezevic
Uni:MIT
Status:Teaching Assistant
>>> print TA.year
4
>>> print TA.salary
100

Thursday, June 28, 2012

18

class NN:
 def __init__(self):
 self.n = 0
 def get(self):
 self.n += 1
 return str(self.n)
 def reset(self):
 self.n = 0
class NS(NN):
 def get(self, s):
 return s + NN.get(self)

foo = NS()
print foo.get('a')
print foo.get(‘b’)
foo.reset()
print foo.get('c')

a1
b2

c1

Thursday, June 28, 2012

Agenda
• Goal

– Use objects to represent everyone in this
course

– Include:
• Instructors
• Students
• Students who assist instructors

• Learn about
– Inheritance
– Multiple inheritance
– Private Variables

Thursday, June 28, 2012

