_—
& MITGAITI

Accelerating
Information Technology

http://aiti.mit.edu

Ghana Summer 2012
Lecture 6 — Data Structures

Lists

Lists

* List is a sequence of values

» String Is a sequence of characters
* ‘banana’

 List can be a sequence of any type

- [10, 20, 30, 40] - integers

* [‘crunchy frog', 'ram bladder’, 'lark vomit'] - strings
* ['spam’, 2.0, 5, [10, 20]] - all mixed!!

Creating a list

Empty list
« empty list =]

>>> cheeses = ['Cheddar’, 'Edam’, 'Gouda’]
>>> numbers = [17, 123]

>>>empty = []

>>> print cheeses, numbers, empty
['Cheddar’, 'Edam’, 'Gouda’] [17, 123] []

* Visualize lists like a collection of numbered
buckets

» Indexing starts at O

Te

Tee

Indexing

. Cheeses:[-Che‘dd‘éf-‘,‘“-‘Edam-,-GO da

Ist
cheeses —= 0 —= 'Cheddar’
1 —= 'Edam’

2 —= 'Gouda’

» >>> print cheeses[0]
o >>> Cheddar

Lists are mutable

* mutable = we can change their values
* Example:

>>> numbers = [17, 123]

>>> print numbers|[1]

>>> 123

>>> numbers[1] =5

>>> print numbers

[17, 5]

Lists are mutable

* mutable = we can change their values
» But be careful!

* Example:
>>> numbers = [17, 123]
>>> print numbers|[2]
>>> |ndexError: list index out of range

Lists - useful operation

* You can check whether element is in the
list
>>> cheeses = ['Cheddar’, 'Edam’, 'Gouda’]
>>> 'Edam’ In cheeses
True
>>> 'Brie' In cheeses
False

Lists-useful operations

» The + operator concatenates lists:

>>>a = :1,2, 3:
>>>p =14, 5, 0]
>>>c=ag+bhb

>>> print
[1, 2, 3, 4, 5, 0]

Slice operators

» what if we want to get part of the list or
string?
» Use slice operators!
>>> g = 'Monty Python'
>>> print s[0:5]
Monty
>>> print s[6:12]
Python

Slice operators on lists

» >>>t=[a",'b,'c,d, e,]
>>> 1[1:3]
[0, 'c]
>>> {[:4]
['a’, 'b', 'c', 'd]
>>> {[3:]
['d’, 'e', 'f']

Slice operators on lists

- >>>t=1[3a','b,'c,'d, e, ']
>>>{[1:3] = [X, Y
>>> print t
['a', X', 'y, 'd, 'e', 'f]

List methods

* append - adds new element to the end

>>>t=1[a",'b, 'c]
>>> t.append('d)
>>> print t

['a', 'b', 'c', 'd']

List methods

* sort - arranges the elements of the list from
low to high

>>>t=[d,'c,'e, b, 'al
>>> {.sort()

>>> print t

['a', 'b', 'c', 'd", 'e']

List methods

* Insert - inserts an item at a given position

>>> t = ['banana’, ‘mango’, ‘coconut’]
>>> t.insert(2, 'watermelon’)
>>> print t

['banana’, ‘mango’, ‘watermelon’, ‘coconut’]

List methods

* remove- removes the first item with a given
value

>>>{ = ['banana’, ‘'mango’, ‘coconut’]
>>> t.,remove(‘mango’)

>>> print t

[[banana’, ‘coconut’]

Lists: lteration

* How can we print out all elements of the
list, using a few lines of code?

t = [banana’, ‘'mango’, ‘coconut’]

— |teration over the items in the list
for fruit in t:
print fruit

— |teration over indices
for index 1n range(len(t)):
print t[index]

Tuples: Introduction

» Essentially an immutable list
— CANNOT change list items

—Form: tuple=('a’, 'b’, ’'c’,
rar, ..)

—fruits tuple = (‘'banana’,
‘mango’, ‘coconut’)

Tuples: Manipulation

- NOTICE:

—tuple[0] = ’'A’ returns an error

* There are some ways around this
— Make new tuple and add part of existing tuple
— tuple = ("A",) + tuple[l:]
—New Tuple: ("aA’, 'b’, 'c’', 'd’, 'e’)

Lists and Tuples: Limitations

aiti_students = ['TK', ‘Priscilla’, ‘Gifty’,
‘Selom’, ...]

UGL_students - all ~40000 students that
go to UGL

What if | wanted to check which one of you
goes to UGL?

| would have to go through 40000 names!

Lists and Tuples: Limitations

What if | wanted to check which one of you
goes to UGL"?

We would have to go through 40000 names!

Are there any shortcuts?
— Sorted lists can help
— Costly to insert new elements into sorted lists

A different solution: dictionaries

Dictionaries

* An unordered collection of (key,value) pairs

* (key, value) pairs are mappings
— key: something you know
— value: something you want to know that is related
to the key Text

» Key and value can be objects of any type

Key Value (multiple possibilities)
‘UGL’ (string)

‘Computer

: (st
“Gifty’ (string) <= Science’ (string)

year (int)
age (int)

Dictionaries: Initialization

* Initialization (maps students to years):
altli students = {‘'Darko’:‘UGL’,
‘Mayi1’ : ‘Kwame’,
‘Ernest’ : YGIMPA' }

Darko UGL
Mayi Kwame
Ernest GIMPA

Dictionaries: Modification

* Modification

— Change Darko’s school:
alti students|[‘Darko’]='MIT’

Darko MIT
Mayi Kwame
Ernest GIMPA

Dictionaries: Modification

* Modification:

— Add a new student:
alti students[‘'Gifty’]=‘UGL’

Darko UGL
Mayi Kwame
Ernest GIMPA

Gifty UGL

Dictionaries

Suppose someone gives you a list of students,
aiti student list

How can we use our dictionary, aiti students, to print out
the teams of each playeronthe aiti students 1ist?

We may not know that aiti students has an entry for an
itemin aiti students list

for student in aiti student list:
1f student in aiti student:
print aiti student[student]
else:
print 'unknown school’

Later on: exception handling

Useful Questions

* Will one set of data be mapped to another?

— Words to definitions, soccer players to jersey
sizes, students to grades

— Dictionary!

Useful Questions

* |s the data I'm storing going to change?
— Mutability VS Immutability
— If NOT - Tuples!

» |f data will change? Can it fit into a single
list?
—If YES - Use a List!
— Recall it has: add, remove and sort methods

