
Accelerating
Information Technology

http://aiti.mit.edu

Ghana Summer 2012
Lecture 6 – Data Structures

Lists

2

Lists

• List is a sequence of values
• String is a sequence of characters

• ‘banana’

• List can be a sequence of any type
• [10, 20, 30, 40] - integers
• ['crunchy frog', 'ram bladder', 'lark vomit'] - strings
• ['spam', 2.0, 5, [10, 20]] - all mixed!!

3

Creating a list

• Empty list
• empty_list = []

• >>> cheeses = ['Cheddar', 'Edam', 'Gouda']
• >>> numbers = [17, 123]
• >>> empty = []
• >>> print cheeses, numbers, empty
• ['Cheddar', 'Edam', 'Gouda'] [17, 123] []

4

Lists

• Visualize lists like a collection of numbered
buckets

• Indexing starts at 0

5

0 1 2 3 4

Indexing

• cheeses = ['Cheddar', 'Edam', 'Gouda']

• >>> print cheeses[0]
• >>> Cheddar

6

Lists are mutable

• mutable = we can change their values
• Example:

>>> numbers = [17, 123]
>>> print numbers[1]
>>> 123
>>> numbers[1] = 5
>>> print numbers
[17, 5]

7

Lists are mutable

• mutable = we can change their values
• But be careful!

• Example:
>>> numbers = [17, 123]
>>> print numbers[2]
>>> IndexError: list index out of range

8

Lists - useful operation

• You can check whether element is in the
list
>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses
True
>>> 'Brie' in cheeses
False

9

Lists-useful operations

• The + operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]

10

Slice operators

• what if we want to get part of the list or
string?

• Use slice operators!
>>> s = 'Monty Python'
>>> print s[0:5]
Monty
>>> print s[6:12]
Python

11

Slice operators on lists

• >>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3]
['b', 'c']
>>> t[:4]
['a', 'b', 'c', 'd']
>>> t[3:]
['d', 'e', 'f']

12

Slice operators on lists

• >>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3] = ['x', 'y']
>>> print t
['a', 'x', 'y', 'd', 'e', 'f']

13

List methods

• append - adds new element to the end

>>> t = ['a', 'b', 'c']
>>> t.append('d')
>>> print t
['a', 'b', 'c', 'd']

14

List methods

• sort - arranges the elements of the list from
low to high

>>> t = ['d', 'c', 'e', 'b', 'a']
>>> t.sort()
>>> print t
['a', 'b', 'c', 'd', 'e']

15

List methods

• insert - inserts an item at a given position

>>> t = ['banana’, ‘mango’, ‘coconut’]
>>> t.insert(2, ‘watermelon’)
>>> print t
['banana’, ‘mango’, ‘watermelon’, ‘coconut’]

16

List methods
• remove- removes the first item with a given

value

>>> t = ['banana’, ‘mango’, ‘coconut’]
>>> t.remove(‘mango’)
>>> print t
[‘banana’, ‘coconut’]

17

Lists: Iteration

• How can we print out all elements of the
list, using a few lines of code?
t = ['banana’, ‘mango’, ‘coconut’]
– Iteration over the items in the list
for fruit in t:
 print fruit

– Iteration over indices
for index in range(len(t)):
 print t[index]

18

Tuples: Introduction

• Essentially an immutable list
– CANNOT change list items

–Form: tuple=(’a’, ’b’, ’c’,
’d’,…)

–fruits_tuple = (‘banana’,
‘mango’, ‘coconut’)

19

Tuples: Manipulation

• NOTICE:
– tuple[0] = ’A’ returns an error

• There are some ways around this
– Make new tuple and add part of existing tuple
– tuple = (’A’,) + tuple[1:]
– New Tuple: (’A’, ’b’, ’c’, ’d’, ’e’)

20

Lists and Tuples: Limitations

• aiti_students = [‘TK’, ‘Priscilla’, ‘Gifty’,
‘Selom’, ...]

• UGL_students - all ~40000 students that
go to UGL

• What if I wanted to check which one of you
goes to UGL?

• I would have to go through 40000 names!

21

Lists and Tuples: Limitations

• What if I wanted to check which one of you
goes to UGL?

• We would have to go through 40000 names!
• Are there any shortcuts?

– Sorted lists can help
– Costly to insert new elements into sorted lists

• A different solution: dictionaries

22

Dictionaries

• An unordered collection of (key,value) pairs
• (key, value) pairs are mappings

– key: something you know
– value: something you want to know that is related

to the key
• Key and value can be objects of any type

23

`Gifty’ (string)

Key Value (multiple possibilities)

‘UGL’ (string)

‘Computer
Science’ (string)

year (int)
age (int)

Text

Dictionaries: Initialization

• Initialization (maps students to years):
aiti_students = {‘Darko’:‘UGL’,
‘Mayi’:‘Kwame’,
‘Ernest’:‘GIMPA’}

24

Key Value
Darko UGL
Mayi Kwame
Ernest GIMPA

Dictionaries: Modification

• Modification
– Change Darko’s school:
aiti_students[‘Darko’]=‘MIT’

25

Key Value
Darko MIT
Mayi Kwame
Ernest GIMPA

Dictionaries: Modification

• Modification:
– Add a new student:
aiti_students[‘Gifty’]=‘UGL’

26

Key Value
Darko UGL
Mayi Kwame
Ernest GIMPA
Gifty UGL

Dictionaries
• Suppose someone gives you a list of students,

aiti_student_list
• How can we use our dictionary, aiti_students, to print out

the teams of each player on the aiti_students_list?
• We may not know that aiti_students has an entry for an

item in aiti_students_list
• for student in aiti_student_list:

 if student in aiti_student:
 print aiti_student[student]
 else:
 print 'unknown school’

• Later on: exception handling

27

Useful Questions

• Will one set of data be mapped to another?
– Words to definitions, soccer players to jersey

sizes, students to grades
– Dictionary!

28

Useful Questions

• Is the data I’m storing going to change?
– Mutability VS Immutability
– If NOT Tuples!

• If data will change? Can it fit into a single
list?
– If YES  Use a List!
– Recall it has: add, remove and sort methods

29

