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Agenda 

• What is Python? and Why Python? 
• Basic Syntax 
• Strings 
• User Input 
• Useful Data Structures 
• Introduction to Functions 
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What is Python? 
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Python is… 

• …interpreted. Languages like C/C++ need 
to translate high-level code to machine 
code… 
 

Compiler 

High-Level Code 

Machine Code 

a = b + c; 

… 
ld $r1, a 
ld $r2, b 
add $r3, $r1, $r2 
st a, $r3 
… 
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Python is… 

• …which means that a program has to be 
compiled separately for each type of 
machine: 
 

program 

compiler 
compiler 

compiler 

Win 
Mac 

Unix 

machine code machine code 
machine code 
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Python is… 
• Python code is compiled to an intermediate 

format called bytecode, which is 
understood by a virtual machine/interpreter. 
 
 

 

Python Source (.py) 

compiler 

Python Bytecode (.pyc) 
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Python is… 

Python Program 

compiler 

Python bytecode 

Win 

Mac 

Unix 

Interpreter 

Interpreter 

Interpreter 
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Why Python? 
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Python because… 

• Portable and architecture-agnostic 
• Convenient built-in functions and data 

structures 
• Syntax is readable and fast to write 

if (x) 
{ 
 if (y) 
 { 
  a(); 
 } 
 b(); 
} 

if x: 
    if y: 
        a() 
    b() 
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Presentation Notes
Python’s interpreted nature makes it portable and architecture-agnostic; if a machine runs Python, it’ll run your code.

Python, like Java, includes many convenient built-in functions and data structures which are already optimized for its virtual machine. Useful data structures (dictionaries, tuples, lists, etc.) are built-in and do not need to be separately imported


Python’s syntax is designed to be readable and fast to write. In addition to dynamic typing, whitespace is used as a block delimiter, and semicolons are not usually necessary:




Python because… 

• Great for rapid prototyping 
– No separate compile step 
– No need to explicitly specify method argument 

types beforehand (due to dynamic typing) 
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Lack of a separate compile step speeds rapid prototyping and debugging




Python for us, because… 

• We want each of you to reach millions of 
users, and don’t want to waste time 
building the pipes and plumbing 
 

• Python is supported by a number of good 
frameworks, led by 
– Django 
– Heroku 
– Google AppEngine 
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The (Ideal) Development Cycle 

• Clearly specify the problem: 
– Inputs, input manipulation, outputs 

• Design the solution: 
– E.g. what algorithms, data structures 

• Implementation 
• Test 
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The (Real) Development Cycle 

• As above, but faster. 
– Python, as a dynamically typed, programming 

language is perfect for rapid prototyping 
• Be prepared to throw away one (or more!) 

prototypes 
– Often you learn crucial things about the 

problem as you code which cannot be fixed 
without starting from scratch. 
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Basic Syntax 
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Syntax 

• Blocks are delimited with whitespace: 
specifically, four spaces (and no tabs) 
 
 

if x: 
    if y: 
        a() 
    b() 

count = 0 
for i in range(0:5) 
    count += i 
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Syntax 

• Semicolons are only used to separate 
multiple statements on the same line, 
which is discouraged: 
 
 if (x) 

{ 
 a(); 
 b(); 
} 

if x: 
 a(); b() 

if x: 
 a() 
  b() 

No 

Yes 
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Syntax 

• Single line comments are denoted with 
hash (#), multiline with three quotes ””” 
 
 

# This is a comment 
foo() 

””” 
This is a 
longer comment 
””” 
foo() 
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Interaction 
• Python has an interactive console which is 

great for tinkering 
 
 
 
 
 
 

• …etc 

$ python 
Python 2.7.1+ (r271:86832, Apr 11 2011, 18:13:53) 
[GCC 4.5.2] on linux2 
Type “help”, “copyright”, “credits” or “license” for 
more information 
>>> a = 1 
>>> a 
1 
>>> type(a) 
<type ‘int’> 
>>> 

18 



Variables 
• Strings 
>>> x = ‘Hello World’ 

• Numerics 
>>> x = 3.1415 

• Booleans 
 >>> x = True 
• Lists 
>>> x = [‘Hello’, True, 3.1415] 

• And many more… 
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Variables 
• Python is a “dynamically typed” language 

– A variable’s data type is not declared. 
– “Statically typed” languages like Java must declare a 

variable’s data type 
 

String x = “Hello World”; 
 

• Get a variable’s data type with the type function 
 >>> x = ‘Hello World’ 
 >>> type(x) 
 <type 'str'> 
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Strings 
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Strings 

• A string is a piece of text. 
• Encase with quotes 

– Single-quotes 
 >>> x = ‘abc’ 
– Double-quotes 
 >>> x = “abc” 
– Triple single-quotes or triple double-quotes 
 >>> x = ‘‘‘abc’’’ 
 >>> x = “““abc””” 
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Strings 

• Use double-quotes to encase text 
containing single-quotes 
 >>> “It’s a string with a single-
quote!” 

 

• What is wrong with this statement? 
 >>> x = abc 
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String as a sequence 
• You can access the characters one at a time 

using the bracket [] operator 

fruit = “banana” 
letter = fruit[1] 
print letter 

1 
2 
3 

b a n a n a 

0 1 2 3 4 5 index 
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String operators 
• Applied to strings, produce strings 

str1 = 'kit ' 
str2 = 'kat ' 
str3 = str1 + str2 
str4 = str3 * 2 
c = str1[0]  
c = str1[4] 

1 
2 
3 
4 
5 
6 

 
 

'kit kat ' 
'kit kat kit kat ' 

'k' 
 IndexError: string index 

out of range 

k i t   

0 1 2 3 

str1 

index 
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• Returns the part of the string from the "m-th" character to the "n-
th" character, including the first but excluding the last. 

0 1 2 3 4 5 6 7 8 9 10 

The slicing operator [m : n] 

fruit S T R A W B E R R Y 

index 

str1 = fruit[2:5] 
str1 = fruit[:5] 
str1 = fruit[5:] 
str1 = fruit[6:-1]  

1 
2 
3 
4 

'RAW' 
'STRAW' 
'BERRY' 
'ERR' 

-10  -9 -8 -7 -6 -5 -4 -3 -2 -1 

26 



User Input 
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User Input 
• raw_input prints a prompt to the user and 

assigns the input to a variable as a string 
 
 

 
• input can be used when we expect the 

input to be a number 



Control Statements 
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Control statements 
 

• Conditionals: control which set of statements is 
executed. 
– if / else 

 

• Iteration: control how many times a set of 
statements is executed. 
– while loops 
– for loops 
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Presentation Notes
Affect how other statements are executed.




The if statement 
 
 
 
 
 

• If the condition is True, the body gets executed. 
• Otherwise, nothing happens. 

 
 
 

if CONDITION: 
   BODY 

any boolean expression 

any set of statements 

if x < 0: 
   print 'x is negative' 

indentation is important 
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The if/else statement 

• If the condition is True, body1 gets executed. 
• Otherwise, body2 gets executed. 

if CONDITION: 
   BODY1 
else: 
   BODY2 

if x < 0: 
   print 'x is negative' 
else: 
   print 'x is positive or zero' 

any set of statements 
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Chained conditionals 
 
 
 
 
 
 

• If the condition1 is True, body1 gets executed. 
• Otherwise, if condition2 is True, body2 gets executed. 
• If neither condition is True, body3 gets executed. 

if CONDITION1: 
   BODY1 
elif CONDITION2:  
   BODY2 
else: 
   BODY3 

any set of statements 

another boolean expression 
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An example 
a = False 
b = True 
if a and b: 
   print 'I love red.' 
elif a or b: 
   print 'I love green.' 
else: 
   print 'I love blue.' 
   print 'I also love purple.' 

What does this output? I love green. 
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An example 
a = False 
b = True 
if a and b: 
   print 'I love red.' 
elif a or b: 
   print 'I love green.' 
else: 
   print 'I love blue.' 
print 'I also love purple.' 

What does this output? I love green. 
I also love purple. 
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Nested conditionals 
 
 
 
 
 
 
 

• Can get confusing. Indentation helps to keep 
the code readable and the python interpreter 
happy! 

if is_adult: 
   if is_senior_citizen: 
       print 'Admission $2 off.' 
   else: 
      print 'Full price.' 
else: 
   print 'Admission $5 off.' 

if is_adult: 
   if is_senior_citizen: 
       print 'Admission $2 off.' 
   else: 
      print 'Full price.' 
else: 
   print 'Admission $5 off.' 

if is_adult: 
   if is_senior_citizen: 
       print 'Admission $2 off.' 
   else: 
       print 'Full price.' 
else: 
   print 'Admission $5 off.' 

outer conditional 
inner conditional 

36 



The while loop 
 
 
 
 
 
 

• As long as the condition is true, the body gets 
executed repeatedly. 

• The first time the condition is false, execution 
ends. 

while CONDITION: 
   BODY 

any boolean expression 

any set of statements 
indentation is important 
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The while loop 

• What does this output? 
 

i = 0 
while i < 3: 
   print i 
   i = i + 1 

0 
1 
2 
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The break statement 
• Immediately exits the innermost loop. 

 while True: 
   line = raw_input('>>> ') 
   if line == 'done': 
       break 
   print line 
print 'Done!' 

>>> not done 
not done 
>>> done 
Done! 
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Useful Data Structures 
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• A  list is a sequence of values. 
• Each element (value) is identified by an index. 
• The elements of the list can be of any type. 

Lists 

tens = [10, 20, 30, 40] 
cities= [’Manila', ‘Cebu', ‘Boracay’] 
empty = [] 

mixed = ['hello', 2.0, 5, [10, 20]] 

• Lists can have mixed types in them, even other 
lists (nested). 
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• Use the [] brackets 

Creating a list 

list_of_ints = [10,20,30,50] 

list_of_ints 10 20 30 50 

four 
int values 

only one name 
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• Individual elements are accessed using the [] operator. 

Accessing list elements 

list_of_ints[0] = 17 

list_of_ints 17 20 30 50 
now has 
value 17 

Lists are mutable! 
Assigns the first element to 17 

List indexing  
starts at 0, not 1! 

new_var = list_of_ints[0] accesses the value 
of the first element 

30 50 17 list_of_ints 20 

new_var 17 now also has 
value 17 

index 

0   1   2   3 
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explain what mutable means
also that this does not apply to other data type



• We can use the print function to output the 
contents of the list: 

Printing a list 

cities = [’Cali’, ‘Bogotá’, ‘Medellin’] 
numbers = [17, 123] 
empty = [] 
print cities, numbers, empty 

[’Cali’, ’Bogotá’, ’Medellin’] [17, 123] [ ] 
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Lists vs. Strings 

• Lists are mutable - their contents can be 
modified 

• Strings are immutable 

name = 'Lenny' 
name[0] = 'J' 

TypeError: object doesn't support item assignment 
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Control Structures 
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The for loop 
 
 
 
 
 
 

• Example: 

for ELEMENT in SEQUENCE: 
   BODY 

any set of statements 

for i in [0,1,2,3]: 
   print i 

 sequence element 
Sequence of values – list, string, etc. 

0 
1 
2 
3 

indentation is important 
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Using range 

• What does this output? 
0  0 
1  1 
2  4 
3  9 

for i in range(4): 
   sq = i * i 
   print i, sq 

for INDEX in range(n): 
   BODY 

any set of statements 

 index variable 
generates sequence of n values 
starting at 0 and incrementing 
by 1  
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Using range 

• What does this output? 

1   
3   
5     

for i in range(1, 7, 2): 
   print i 

for INDEX in range([start], stop, [step]): 
   BODY 

any set of statements 

 index variable 
generates sequence of values 
start and step are optional  
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For loop and strings 

• Iterating through the characters of a string 

str1 = 'stressed' 
for c in str1: 
    print c, 

s t r e s s e d 
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For vs While 

• For loop is primarily used  
• for iterating over a sequence of values 
• when we know the number of iterations in advance 

• While loop is primarily used 
• when we don't know the number of iterations in 

advance (they could be controlled by user input) 
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Introduction to Functions 
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Functions 
• A function is a sequence of statements that has been 

given a name. 

def NAME (PARAMETERS): 
   STATEMENTS 

any set of statements 

function name 
list of function 
arguments 

function 
definition 

function signature 
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Now you are all set to work on 
Lab 1!  
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Lab 1  
1. Calculate Fibonacci number 

fib(n) 
2. Display the day of the week given a date 

zellers() 
3. Implement the Rock Paper Scissors game 

rock_paper_scissors() 
4. Encode a given string using the Caesar 

cipher 
cipher() 
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Next Class 

• More on Functions 
• Object Oriented Programming 
• Exceptions 
• Regular Expressions 
• How to be a Python Ninja!  
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