
Accelerating
Information Technology

Innovation

http://aiti.mit.edu

Cali, Colombia
Summer 2012

Lesson 1 – Introduction to Python

http://aiti.mit.edu/�

Agenda

• What is Python? and Why Python?
• Basic Syntax
• Strings
• User Input
• Useful Data Structures
• Introduction to Functions

2

What is Python?

3

Python is…

• …interpreted. Languages like C/C++ need
to translate high-level code to machine
code…

Compiler

High-Level Code

Machine Code

a = b + c;

…
ld $r1, a
ld $r2, b
add $r3, $r1, $r2
st a, $r3
…

4

Python is…

• …which means that a program has to be
compiled separately for each type of
machine:

program

compiler
compiler

compiler

Win
Mac

Unix

machine code machine code
machine code

5

Python is…
• Python code is compiled to an intermediate

format called bytecode, which is
understood by a virtual machine/interpreter.

Python Source (.py)

compiler

Python Bytecode (.pyc)

6

Python is…

Python Program

compiler

Python bytecode

Win

Mac

Unix

Interpreter

Interpreter

Interpreter

7

Why Python?

8

Python because…

• Portable and architecture-agnostic
• Convenient built-in functions and data

structures
• Syntax is readable and fast to write

if (x)
{
 if (y)
 {
 a();
 }
 b();
}

if x:
 if y:
 a()
 b()

9

Presenter
Presentation Notes
Python’s interpreted nature makes it portable and architecture-agnostic; if a machine runs Python, it’ll run your code.

Python, like Java, includes many convenient built-in functions and data structures which are already optimized for its virtual machine. Useful data structures (dictionaries, tuples, lists, etc.) are built-in and do not need to be separately imported

Python’s syntax is designed to be readable and fast to write. In addition to dynamic typing, whitespace is used as a block delimiter, and semicolons are not usually necessary:

Python because…

• Great for rapid prototyping
– No separate compile step
– No need to explicitly specify method argument

types beforehand (due to dynamic typing)

10

Presenter
Presentation Notes
Lack of a separate compile step speeds rapid prototyping and debugging

Python for us, because…

• We want each of you to reach millions of
users, and don’t want to waste time
building the pipes and plumbing

• Python is supported by a number of good
frameworks, led by
– Django
– Heroku
– Google AppEngine

11

The (Ideal) Development Cycle

• Clearly specify the problem:
– Inputs, input manipulation, outputs

• Design the solution:
– E.g. what algorithms, data structures

• Implementation
• Test

12

The (Real) Development Cycle

• As above, but faster.
– Python, as a dynamically typed, programming

language is perfect for rapid prototyping
• Be prepared to throw away one (or more!)

prototypes
– Often you learn crucial things about the

problem as you code which cannot be fixed
without starting from scratch.

13

Basic Syntax

14

Syntax

• Blocks are delimited with whitespace:
specifically, four spaces (and no tabs)

if x:
 if y:
 a()
 b()

count = 0
for i in range(0:5)
 count += i

15

Syntax

• Semicolons are only used to separate
multiple statements on the same line,
which is discouraged:

 if (x)

{
 a();
 b();
}

if x:
 a(); b()

if x:
 a()
 b()

No

Yes

16

Syntax

• Single line comments are denoted with
hash (#), multiline with three quotes ”””

This is a comment
foo()

”””
This is a
longer comment
”””
foo()

17

Interaction
• Python has an interactive console which is

great for tinkering

• …etc

$ python
Python 2.7.1+ (r271:86832, Apr 11 2011, 18:13:53)
[GCC 4.5.2] on linux2
Type “help”, “copyright”, “credits” or “license” for
more information
>>> a = 1
>>> a
1
>>> type(a)
<type ‘int’>
>>>

18

Variables
• Strings
>>> x = ‘Hello World’

• Numerics
>>> x = 3.1415

• Booleans
 >>> x = True
• Lists
>>> x = [‘Hello’, True, 3.1415]

• And many more…

19

Variables
• Python is a “dynamically typed” language

– A variable’s data type is not declared.
– “Statically typed” languages like Java must declare a

variable’s data type

String x = “Hello World”;

• Get a variable’s data type with the type function
 >>> x = ‘Hello World’
 >>> type(x)
 <type 'str'>

20

Strings

21

Strings

• A string is a piece of text.
• Encase with quotes

– Single-quotes
 >>> x = ‘abc’
– Double-quotes
 >>> x = “abc”
– Triple single-quotes or triple double-quotes
 >>> x = ‘‘‘abc’’’
 >>> x = “““abc”””

22

Strings

• Use double-quotes to encase text
containing single-quotes
 >>> “It’s a string with a single-
quote!”

• What is wrong with this statement?
 >>> x = abc

23

String as a sequence
• You can access the characters one at a time

using the bracket [] operator

fruit = “banana”
letter = fruit[1]
print letter

1
2
3

b a n a n a

0 1 2 3 4 5 index

24

String operators
• Applied to strings, produce strings

str1 = 'kit '
str2 = 'kat '
str3 = str1 + str2
str4 = str3 * 2
c = str1[0]
c = str1[4]

1
2
3
4
5
6

'kit kat '
'kit kat kit kat '

'k'
 IndexError: string index

out of range

k i t

0 1 2 3

str1

index

25

• Returns the part of the string from the "m-th" character to the "n-
th" character, including the first but excluding the last.

0 1 2 3 4 5 6 7 8 9 10

The slicing operator [m : n]

fruit S T R A W B E R R Y

index

str1 = fruit[2:5]
str1 = fruit[:5]
str1 = fruit[5:]
str1 = fruit[6:-1]

1
2
3
4

'RAW'
'STRAW'
'BERRY'
'ERR'

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

26

User Input

27

User Input
• raw_input prints a prompt to the user and

assigns the input to a variable as a string

• input can be used when we expect the

input to be a number

Control Statements

29

Control statements

• Conditionals: control which set of statements is
executed.
– if / else

• Iteration: control how many times a set of
statements is executed.
– while loops
– for loops

30

Presenter
Presentation Notes
Affect how other statements are executed.

The if statement

• If the condition is True, the body gets executed.
• Otherwise, nothing happens.

if CONDITION:
 BODY

any boolean expression

any set of statements

if x < 0:
 print 'x is negative'

indentation is important

31

The if/else statement

• If the condition is True, body1 gets executed.
• Otherwise, body2 gets executed.

if CONDITION:
 BODY1
else:
 BODY2

if x < 0:
 print 'x is negative'
else:
 print 'x is positive or zero'

any set of statements

32

Chained conditionals

• If the condition1 is True, body1 gets executed.
• Otherwise, if condition2 is True, body2 gets executed.
• If neither condition is True, body3 gets executed.

if CONDITION1:
 BODY1
elif CONDITION2:
 BODY2
else:
 BODY3

any set of statements

another boolean expression

33

An example
a = False
b = True
if a and b:
 print 'I love red.'
elif a or b:
 print 'I love green.'
else:
 print 'I love blue.'
 print 'I also love purple.'

What does this output? I love green.

34

An example
a = False
b = True
if a and b:
 print 'I love red.'
elif a or b:
 print 'I love green.'
else:
 print 'I love blue.'
print 'I also love purple.'

What does this output? I love green.
I also love purple.

35

Nested conditionals

• Can get confusing. Indentation helps to keep
the code readable and the python interpreter
happy!

if is_adult:
 if is_senior_citizen:
 print 'Admission $2 off.'
 else:
 print 'Full price.'
else:
 print 'Admission $5 off.'

if is_adult:
 if is_senior_citizen:
 print 'Admission $2 off.'
 else:
 print 'Full price.'
else:
 print 'Admission $5 off.'

if is_adult:
 if is_senior_citizen:
 print 'Admission $2 off.'
 else:
 print 'Full price.'
else:
 print 'Admission $5 off.'

outer conditional
inner conditional

36

The while loop

• As long as the condition is true, the body gets
executed repeatedly.

• The first time the condition is false, execution
ends.

while CONDITION:
 BODY

any boolean expression

any set of statements
indentation is important

37

The while loop

• What does this output?

i = 0
while i < 3:
 print i
 i = i + 1

0
1
2

38

The break statement
• Immediately exits the innermost loop.

 while True:
 line = raw_input('>>> ')
 if line == 'done':
 break
 print line
print 'Done!'

>>> not done
not done
>>> done
Done!

39

Useful Data Structures

40

• A list is a sequence of values.
• Each element (value) is identified by an index.
• The elements of the list can be of any type.

Lists

tens = [10, 20, 30, 40]
cities= [’Manila', ‘Cebu', ‘Boracay’]
empty = []

mixed = ['hello', 2.0, 5, [10, 20]]

• Lists can have mixed types in them, even other
lists (nested).

41

• Use the [] brackets

Creating a list

list_of_ints = [10,20,30,50]

list_of_ints 10 20 30 50

four
int values

only one name

42

• Individual elements are accessed using the [] operator.

Accessing list elements

list_of_ints[0] = 17

list_of_ints 17 20 30 50
now has
value 17

Lists are mutable!
Assigns the first element to 17

List indexing
starts at 0, not 1!

new_var = list_of_ints[0] accesses the value
of the first element

30 50 17 list_of_ints 20

new_var 17 now also has
value 17

index

0 1 2 3

43

Presenter
Presentation Notes
explain what mutable means
also that this does not apply to other data type

• We can use the print function to output the
contents of the list:

Printing a list

cities = [’Cali’, ‘Bogotá’, ‘Medellin’]
numbers = [17, 123]
empty = []
print cities, numbers, empty

[’Cali’, ’Bogotá’, ’Medellin’] [17, 123] []

44

Lists vs. Strings

• Lists are mutable - their contents can be
modified

• Strings are immutable

name = 'Lenny'
name[0] = 'J'

TypeError: object doesn't support item assignment

45

Control Structures

46

The for loop

• Example:

for ELEMENT in SEQUENCE:
 BODY

any set of statements

for i in [0,1,2,3]:
 print i

 sequence element
Sequence of values – list, string, etc.

0
1
2
3

indentation is important

47

Using range

• What does this output?
0 0
1 1
2 4
3 9

for i in range(4):
 sq = i * i
 print i, sq

for INDEX in range(n):
 BODY

any set of statements

 index variable
generates sequence of n values
starting at 0 and incrementing
by 1

48

Presenter
Presentation Notes
Fix this slide… in 2. clarify that we do not include last element

Using range

• What does this output?

1
3
5

for i in range(1, 7, 2):
 print i

for INDEX in range([start], stop, [step]):
 BODY

any set of statements

 index variable
generates sequence of values
start and step are optional

49

For loop and strings

• Iterating through the characters of a string

str1 = 'stressed'
for c in str1:
 print c,

s t r e s s e d

50

Presenter
Presentation Notes
show this example with print statements

For vs While

• For loop is primarily used
• for iterating over a sequence of values
• when we know the number of iterations in advance

• While loop is primarily used
• when we don't know the number of iterations in

advance (they could be controlled by user input)

51

Introduction to Functions

52

Functions
• A function is a sequence of statements that has been

given a name.

def NAME (PARAMETERS):
 STATEMENTS

any set of statements

function name
list of function
arguments

function
definition

function signature

53

Now you are all set to work on
Lab 1! 

54

Lab 1
1. Calculate Fibonacci number

fib(n)
2. Display the day of the week given a date

zellers()
3. Implement the Rock Paper Scissors game

rock_paper_scissors()
4. Encode a given string using the Caesar

cipher
cipher()

55

Next Class

• More on Functions
• Object Oriented Programming
• Exceptions
• Regular Expressions
• How to be a Python Ninja!

56

	Accelerating �Information Technology �Innovation
	Agenda
	What is Python?
	Python is…
	Python is…
	Python is…
	Python is…
	Why Python?
	Python because…
	Python because…
	Python for us, because…
	The (Ideal) Development Cycle
	The (Real) Development Cycle
	Basic Syntax
	Syntax
	Syntax
	Syntax
	Interaction
	Variables
	Variables
	Strings
	Strings
	Strings
	String as a sequence
	String operators
	The slicing operator [m : n]
	User Input
	User Input
	Control Statements
	Control statements
	The if statement
	The if/else statement
	Chained conditionals
	An example
	An example
	Nested conditionals
	The while loop
	The while loop
	The break statement
	Useful Data Structures
	Lists
	Creating a list
	Accessing list elements
	Printing a list
	Lists vs. Strings
	Control Structures
	The for loop
	Using range
	Using range
	For loop and strings
	For vs While
	Introduction to Functions
	Functions
	Now you are all set to work on Lab 1! 
	Lab 1	
	Next Class

