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What You Know So Far 

• Each object has its own copy of methods 
and fields: 
 

class BankAccount { 
 private String name; 
 private double balance; 
 public void withdraw(double amount) 
} 
 
BankAccount mikeAcc = new BankAccount(“Mike”, 100); 
BankAccount zachAcc = new BankAccount(“Zach”, 20); 
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• Each object has its own copy of methods 
and fields: 

Instance Fields and Methods 
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mikeAcc 

String name 

double balance 

void setName(String) 

zachAcc 

String name 

double balance 

void setName(String) 



Instance Fields and Methods 
BankAccount mikeAcc = new BankAccount(“Mike”, 100); 

BankAccount zachAcc = new BankAccount(“Zach”, 20); 

 

System.out.println(mikeAcc.getBalance()); //100 

System.out.println(zachAcc.getBalance()); //20 

 

zachAcc.withdraw(19); 

 

System.out.println(mikeAcc.getBalance()); //100 

System.out.println(zachAcc.getBalance()); //1 
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Shared Fields 
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mikeAcc 

String name 

double balance 

void setName(String) 

zachAcc 

String name 

double balance 

void setName(String) 

BankAccount Class 

double interestRate 

• What if we wanted to make 
a field shared among all 
objects of a class? 



Static Fields 

• A given class will only have one copy of each 
of its static fields 
– This will be shared among all the objects. 

 
• Each static field exists even if no objects of 

the class have been created.  
 

• Use the word static to declare a static 
field. 
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Static Fields 

• Only one instance of a static field data for 
the entire class, not one per instance. 
 

• "static" is a historic keyword from C/C++ 
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Static Fields Example 
class BankAccount { 

 public static double interestRate = 0.02; 
} 

 

BankAccount mikeAcc = new BankAccount(“Mike”, 100); 

BankAccount zachAcc = new BankAccount(“Zach”, 20); 

 

System.out.println(mikeAcc.interestRate); //0.02 

System.out.println(BankAccount.interestRate); //0.02 

 

mikeAcc.interestRate = 0.05; 

System.out.println(zachAcc.interestRate); //0.05 
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Counting Objects Created 
public class BankAccount { 

 private static int numAccounts = 0; 

 

 public BankAccount(String name, double balance) 
{ 

  numAccounts++; 

 } 

} 
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Unique ID for Objects 
public class BankAccount { 

 private static int nextAccountNum = 0; 

 private int accountNum; 

 

 public BankAccount(String name,  

           double balance) 

  { 

    accountNum = nextAccountNum++; 

 } 

} 
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Array of All Objects Created 
public class BankAccount { 

 private static BankAccount[] accounts =  

   new BankAccount[100]; 

 private static int nextAccountNum = 0; 

 

 public BankAccount(String name,  

           double balance) { 

    accounts[nextAccountNum++] = this;  

 } 

} 
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What would happen if we deleted this static modifier? 



Array of All Objects Created 
public class BankAccount { 

 private BankAccount[] accounts =  

   new BankAccount[100]; 

 private static int nextAccountNum = 0; 

 

 public BankAccount(String name,  

           double balance) { 

    accounts[nextAccountNum++] = this;  

 } 

} 
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More Static Field Examples 
Constants used by a class: 

– Usually used with final keyword 
 

– Only need to have one per class; don’t need 
one in each object: 

 public static final double TEMP_CONVERT = 1.8; 

 

– If variable TEMP_CONVERT is in class 
Temperature, it is invoked by: 

   double t = Temperature.TEMP_CONVERT * temp; 
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Instance Methods 
• These are what you know so far… 

 
• These define the operations you can perform 

on objects of a class. 
 

• Methods typically operate on the instance 
(non-static ) fields of the class. 
– Each object has a “copy” of the method just as it 

has copies of the fields. 

14 



Static / Class Methods 
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mikeAcc 

String name 

double balance 

void setName(String) 

zachAcc 

String name 

double balance 

void setName(String) 

BankAccount Class 

int numAccounts 

• Static methods are shared 
by all objects of the class 
 

• One copy for all objects 
int getNumAccounts() 



Static Methods 

To define a class method, add the keyword 
static to its definition.  

 
public class BankAccount { 

 private static int numAccounts = 0; 

 

 public static int getNumAccounts() { 

  return numAccounts; 

 } 

} 
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Calling Static Methods 
public class BankAccount { 

 private static int numAccounts = 0; 

 

 public static int getNumAccounts() { 
  return numAccounts; 

 } 

} 

 
 
BankAccount mikeAcc = new BankAccount(“Mike”, 100); 
System.out.println(mikeAccount.getNumAccounts()); //1 
 
BankAccount zachAcc = new BankAccount(“Zach”, 20); 
System.out.println(mikeAccount.getNumAccounts()); //2 
System.out.println(BankAccount.getNumAccounts()); //2 
 

17 



Static Methods 

• Static methods do not operate on a 
specific instance of their class 
 
 

• Have access only to static fields and 
methods of the class 
– Cannot access non-static ones 
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Static Methods Limitations 
public class BankAccount { 

 private static int nextAccountNum = 0; 

 private int accountNum;  

 

 public static int getAccountNum() { 
   return accountNum;   

 } 

} 

 
 

Illegal, cannot access non-static field from static method 
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More Static Methods 

• Static methods are also used when you need to 
define a method on 2 objects. 

 
public static BankAccount greaterBalance 
   (BankAccount ba1, BankAccount ba2) 
{ 
 if (ba1.balance() >= ba2.balance()) 
  return ba1; 
 else 
  return ba2; 
} 
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Static Method Examples 

• For methods that use only the arguments and 
therefore do not operate on an object 
public static double pow(double b, double p) 

// Math class, takes b to the p power 
 

• For methods that only need static data fields 
   

• We HAVE TO use the static key word on the main 
method in the class that starts the program 
– No objects exist yet for the main method to operate on! 

21 



The final keyword 

• Sometimes you will declare and initialize a 
variable with a value that will never 
change. 
 

• To prevent any accidental changes, Java 
provides you with a way to fix the value of 
any variable by using the final keyword 
when you declare it. 
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The final keyword 

• We declared PI as 
       public static double PI = 3.14159; 
  
 but this does not prevent changing its value:  
       MyMath.PI = 999999999; 
 
• We use keyword final to denote a constant: 
   public static final double PI = 3.14159; 
 
• Once we declare a variable to be final, it's value 

can no longer be changed! 
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Final References  

• Consider this final reference to a Point: 
public static final Point ORIGIN = 
                            new Point(0,0); 
 

• This prevents changing the reference ORIGIN: 
      MyMath.ORIGIN = new Point(3, 4); 

 
• BUT! You can still call methods on ORIGIN that 

change the state of ORIGIN. 
          MyMath.ORIGIN.setX(4); 
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