
Accelerating
Information Technology

Innovation

http://aiti.mit.edu

Cali, Colombia
Summer 2012

Lesson 08 – Static Fields and Methods

http://aiti.mit.edu/�

What You Know So Far

• Each object has its own copy of methods
and fields:

class BankAccount {
 private String name;
 private double balance;
 public void withdraw(double amount)
}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);
BankAccount zachAcc = new BankAccount(“Zach”, 20);

2

• Each object has its own copy of methods
and fields:

Instance Fields and Methods

3

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

Instance Fields and Methods
BankAccount mikeAcc = new BankAccount(“Mike”, 100);

BankAccount zachAcc = new BankAccount(“Zach”, 20);

System.out.println(mikeAcc.getBalance()); //100

System.out.println(zachAcc.getBalance()); //20

zachAcc.withdraw(19);

System.out.println(mikeAcc.getBalance()); //100

System.out.println(zachAcc.getBalance()); //1

4

Shared Fields

5

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

BankAccount Class

double interestRate

• What if we wanted to make
a field shared among all
objects of a class?

Static Fields

• A given class will only have one copy of each
of its static fields
– This will be shared among all the objects.

• Each static field exists even if no objects of

the class have been created.

• Use the word static to declare a static
field.

6

Static Fields

• Only one instance of a static field data for
the entire class, not one per instance.

• "static" is a historic keyword from C/C++

7

Static Fields Example
class BankAccount {

 public static double interestRate = 0.02;
}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);

BankAccount zachAcc = new BankAccount(“Zach”, 20);

System.out.println(mikeAcc.interestRate); //0.02

System.out.println(BankAccount.interestRate); //0.02

mikeAcc.interestRate = 0.05;

System.out.println(zachAcc.interestRate); //0.05

8

Counting Objects Created
public class BankAccount {

 private static int numAccounts = 0;

 public BankAccount(String name, double balance)
{

 numAccounts++;

 }

}

9

Unique ID for Objects
public class BankAccount {

 private static int nextAccountNum = 0;

 private int accountNum;

 public BankAccount(String name,

 double balance)

 {

 accountNum = nextAccountNum++;

 }

}

10

Array of All Objects Created
public class BankAccount {

 private static BankAccount[] accounts =

 new BankAccount[100];

 private static int nextAccountNum = 0;

 public BankAccount(String name,

 double balance) {

 accounts[nextAccountNum++] = this;

 }

}

11

What would happen if we deleted this static modifier?

Array of All Objects Created
public class BankAccount {

 private BankAccount[] accounts =

 new BankAccount[100];

 private static int nextAccountNum = 0;

 public BankAccount(String name,

 double balance) {

 accounts[nextAccountNum++] = this;

 }

}

12

More Static Field Examples
Constants used by a class:

– Usually used with final keyword

– Only need to have one per class; don’t need
one in each object:

 public static final double TEMP_CONVERT = 1.8;

– If variable TEMP_CONVERT is in class
Temperature, it is invoked by:

 double t = Temperature.TEMP_CONVERT * temp;

 13

Instance Methods
• These are what you know so far…

• These define the operations you can perform

on objects of a class.

• Methods typically operate on the instance
(non-static) fields of the class.
– Each object has a “copy” of the method just as it

has copies of the fields.

14

Static / Class Methods

15

mikeAcc

String name

double balance

void setName(String)

zachAcc

String name

double balance

void setName(String)

BankAccount Class

int numAccounts

• Static methods are shared
by all objects of the class

• One copy for all objects
int getNumAccounts()

Static Methods

To define a class method, add the keyword
static to its definition.

public class BankAccount {

 private static int numAccounts = 0;

 public static int getNumAccounts() {

 return numAccounts;

 }

}

16

Calling Static Methods
public class BankAccount {

 private static int numAccounts = 0;

 public static int getNumAccounts() {
 return numAccounts;

 }

}

BankAccount mikeAcc = new BankAccount(“Mike”, 100);
System.out.println(mikeAccount.getNumAccounts()); //1

BankAccount zachAcc = new BankAccount(“Zach”, 20);
System.out.println(mikeAccount.getNumAccounts()); //2
System.out.println(BankAccount.getNumAccounts()); //2

17

Static Methods

• Static methods do not operate on a
specific instance of their class

• Have access only to static fields and
methods of the class
– Cannot access non-static ones

18

Static Methods Limitations
public class BankAccount {

 private static int nextAccountNum = 0;

 private int accountNum;

 public static int getAccountNum() {
 return accountNum;

 }

}

Illegal, cannot access non-static field from static method

19

More Static Methods

• Static methods are also used when you need to
define a method on 2 objects.

public static BankAccount greaterBalance
 (BankAccount ba1, BankAccount ba2)
{
 if (ba1.balance() >= ba2.balance())
 return ba1;
 else
 return ba2;
}
 20

Static Method Examples

• For methods that use only the arguments and
therefore do not operate on an object
public static double pow(double b, double p)

// Math class, takes b to the p power

• For methods that only need static data fields

• We HAVE TO use the static key word on the main
method in the class that starts the program
– No objects exist yet for the main method to operate on!

21

The final keyword

• Sometimes you will declare and initialize a
variable with a value that will never
change.

• To prevent any accidental changes, Java
provides you with a way to fix the value of
any variable by using the final keyword
when you declare it.

22

The final keyword

• We declared PI as
 public static double PI = 3.14159;

 but this does not prevent changing its value:
 MyMath.PI = 999999999;

• We use keyword final to denote a constant:
 public static final double PI = 3.14159;

• Once we declare a variable to be final, it's value

can no longer be changed!

23

Final References

• Consider this final reference to a Point:
public static final Point ORIGIN =
 new Point(0,0);

• This prevents changing the reference ORIGIN:
 MyMath.ORIGIN = new Point(3, 4);

• BUT! You can still call methods on ORIGIN that

change the state of ORIGIN.
 MyMath.ORIGIN.setX(4);

24

	Accelerating �Information Technology �Innovation
	What You Know So Far
	Instance Fields and Methods
	Instance Fields and Methods
	Shared Fields
	Static Fields
	Static Fields
	Static Fields Example
	Counting Objects Created
	Unique ID for Objects
	Array of All Objects Created
	Array of All Objects Created
	More Static Field Examples
	Instance Methods
	Static / Class Methods
	Static Methods
	Calling Static Methods
	Static Methods
	Static Methods Limitations
	More Static Methods
	Static Method Examples
	The final keyword
	The final keyword
	Final References

